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containing cells are genetic instability and maintenance of high levels of
gene expression.

The s ing point for this project has been a class of models
» developed previously by our group for Escherichia coli. The base model is
that for an ifidividual cell. All cellular camponents are distributed into
L 20 model oofponents (e.g. chromosonal DNA, stable RNA, m-RNA, etc.).
Populatitn models are constructed from an ensemble of single-cell models.

Population models account for distribution of cellular capabilities among a
poplhlation. The base single-cell model responds explicitly to changes in
.glucose or ammonium ion concentrations in the medium and mimics growth
" under either fully aexgbic or anaercbhic conditions.

- Toacop 1€§» o tndroduc
» During the first Toject, we }é’ave successfully introduced
——a model fqr the 0l of replication of plasmids with the ColEl origin of

“replicatio Model predictions of copy number compare well to reported
experimental results. If we force the model to make a given amount of
plasmid encoded pret€in, we can then predict genetic instability for a
culture producing the\same level of plasmid-encoded protein. The model
prediction and experimental results show that stability (in terms of number
of generations before a revertant reaches 90% of the total population) is
greater in faster growing than slow growing cultures. Further we have
extended the model to the low growth rate regime (< 0.15 hr ‘). This
extension has allowed us to make predictions of the effect of growth rate
on plasmid copy number. The slow growth region is of interest since
immobilized cell reactors may be useful commercially and some other
applications, such as in situ treatment of wastes may place cells under
conditions of restricted growth. Extension of the model to include amino
acids as substrates and an explicit model of the lac promoter is now

partially complete.
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Discussion of Results for Year 1

The purpose of the project is to develop a mathematical model for
Escherichia coli carrying plasmids in which a high level of plasmid encoded
protein synthesis can be induced. The model can then be used to guide
strain construction and the development of bioreactors and appropriate
operating strategies.

Qur proposal to ONR was based on previous work we had done developing
models for Escherichiacoli. Early attempts to write models of populations
with both chemical structure and segregation (i.e. recognition that a popu-
lation contains a destruction of properties) failed. These attempts failed
because the models were written from a population perspective and the
resulting equations were intractable. We circumvented these problems by
writing a detailed model of an individual cell which contained significant
chemical structure and then constructed a population model using a finite
representation technique. This approach results in a mathematically
tractable model that predicts the dynamic (i.e. transient) response of a
population to perturbations in environmental variables such as substrate
concentration (glucose or ammonium ion) or flow rate in a chemostat.

Review articles describing this modeling approach have appeared during this
Jast year (Shuler, 1985. Chem. Eng. Commun. 36:161; and Shuler, 1985. In
Comprehensive Biotechnology Vol. 1, p. 119) and reprints are included in
this report. Although these articles appeared during the period of ONR
support, they were written prior to the initiation of the ONR grant.

We have successfully introduced a model for the replication of ColEl
type plasmids into the base single-cell model of E.coli. The results are
described in the manuscript entitled "Mathematical Model for the Control of
ColEl Type Plasmid Replication" which is currently in press for publication
in Plasmid (copy attached).

RNAIT is a transcript that combines with the plasmid origin of
replication to form a preprimer for replication. If RNAI binds with RNAII
before it reaches the origin, no repiication can occur. ROM is a plasmid-
encoded protein that enhances RNAI binding. Using binding-constants for
RNAI-RNAII measured by Tomizawa and colleagues for various mutations in the
absence and presence of the ROM protein, we are able to predict copy
numbers similar to that measured by Tomizawa and colleagues. The model
even predicts correctly those cases where copy number exceeds 100 which
former models have been unable to do. Using the model we were able to test
three hypotheses about the mechanism of interaction of RNAI and the Rom
protein. The model favorably supports the mechanism proposed by Tomizawa
and colleagues concerning the nature of RNAI-RNAII interactions and that
the ROM protein increases the binding rate between the tw.o RNA species.

The hypothesis that the interactions of RNAI-RNAII increases the
susceptibility of RNAII to the action of endonucleases is not a plausible
mechanism.

The production of high levels of plasmid-encoded proteins leads to a
"metabolic burden" on host cells. Revertants that lose the piasmid through
missegregation of the plasmid have a distinct growth advantage over
plasmid-containing cells. Consequently nonproductive revertant cells can




displace plasmid-containing cells or what is often called "genetic
instability". B8y using our model with a host cell containing plasmid we
can make reasonable predictions of genetic instability. These results are
discussed in the enclosed manuscript, "A Mathematical Model for Predicting
Copy Number and Genetic Stability in Escherichia coli" which has been accepted
for publication in Biotechnology and Bioengineering. The model over-
predicts the degree of stability of the culture slightly. The model only
recognizes segregational plasmid instability. Since structural instability
or the formation of multimers is possible in the culture used for experi-
mental verification, a slight overprediction of stability is under-
standable, Boih model and experimeqf show that the system is more stable
at u = 0.7 hr™" than at y = 0.3 hr™t,

For many practical systems it may be desirable to operate for a period
of time under fairly severe nutrient limitations. Cyclic reactors,
immobilized cell systems, or insitu treatment of hazardous wastes are
examples. It may also be of importance to understand what steps become
growth rate controlling under a variety of environmental circumstances. In
a manuscript entitled, "Growth Behavior and Prediction of Copy Number and
Retention of ColEl Type Plasmids in E. coli Under Slow Growth Conditions"
submitted for publication in a volume of Annals NY Acad. Sci. we report on
some of our results. Under severe glucose limitations the cell is starved
for energy - primarily needed to maintain membrane energization. At less
severe conditions glucose is limiting primarily as a supplier of carbon for
cellular material. If the transcription rates for RNAI and RNAII decrease
at the same rate as the decrease in overall transcription for glucose
limitation, then copy number is relatively constant for dilution rates
greater than 0.3 hr™* but increase dramatically at very low growth rates.

We are currently working on extending the model to respond explicitly
to the addition of amino acids since such additions are commonly used
commercially. We have nearly completed work on a model for glutamine
incorporation. We have also begun work (although we are in the formative
stages) on inserting a mathematical model of the lac promoter into the
plasmid-cell model. The model will allow us to predict the dynamic
response of a culture to induction with IPTG and alsoc to predict the level
of overproduction of plasmid-encoded protein.
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An individual cell is an immensely complicated self-regulated chemical reactor that can alter its
biosynthetic machinery to meet the demands of a changing environment. The biochemical engineer
must build a large macroscopic reactor 1o harness the cells for desirable chemical conversions. The
design and control of such bioreactors would be facilitated with effective mathematical models of the
response of the culture to changes in nutrients or other environmental variables. Because of the
inherent internal plasticity of the cell, models must reflect the changing structure of the biomass. This
paper reviews some examples of models which contain components representing various chemical
fractions within the cell. The advantage of these models is their potential ability to predict the dynamic
behavior of a cellular population. In addition such models are potential tools for testing hypotheses
concerning cellular control mechanisms and consequently the development of more effective cell
strains. Models of populations based on a finite-representation technique using an ensemble of
chemically structured single-cell models are emphasized. These latter models are capable of accurate a
priori prediction of bioreactors to perturbations in flow rates or feed concentrations. Models which
aspire to the a priori quantitative prediction of cell population behavior must be sufficiently complex
that shifts in growth-rate limiting processes can be taken into account; consequently a high-level of
chemical structure will characterize the best models. d;..;p;-

KEYWORDS Bioreactors, Escherichia coli, Structured mathematical models

-y .

INTRODUCTION

Biochemical reaction engineering differs significantly from traditional chemical
reaction engineering due to the nature of the “catalytic reagent”. A catalyst such
as platinum on a support is relatively fixed in its catalytic properties and responds
very slowly and passively to changes in its environment. A living cell is an
independent chemical reactor; a very complex reactor with more than a thousand
individual reactions operating under a highly sophisticated control system. Be-
cause of this control system the biosynthetic capabilities of a cell actively change
in response to its environment. Thus the bioreacior engineer is faced with the
difficult task of designing a macroscopic reactor to provide an optimal environ-
ment for a multitude of individual cellular reactors nested inside the macroscopic
reactor. Optimal in this case implies maximum expression of a population’s
genetic potential for a given set of chemical transformations. This inherent
plasticity of the biological catalyst differentiates biochemical reaction engineering
from its traditional counterpart.

In traditional chemical reaction engineering mathematical models are important
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to reactor design and control and also as tools to discern possible reaction
mechanisms. Perhaps in bioreactors such models are of even greater importance
because of the inherent complexity of biological systems and the difficulty in
directly measuring important growth parameters. For example, in a traditional
reactor the measurement of temperature and pressure often allow the engineer to
determine reactor state. The state of a bioreactor cannot be measured so easily
(e.g. temperature and pressure do not fix system properties).

However, we cannot usefully describe bioreactors with mathematical models
unless the underlying physical reality is understood. The next section gives a very
brief description of cellular systems.

HOW A CELL WORKS

From the engineer’s point of view the key clements in a cell are enzymes.
Enzymes are catalysts which generally have a high level of specificity and fairly
rapid reaction rates at near ambient conditions (e.g. typical turnover numbers are
in the range of 10° to 10° molecules of product/min/active site (Mahler and
Cordes, 1966)). A simple bacterium such as the common intestinal organism
Escherichia coli can produce over 1000 different enzymes (Watson, 1976). Each
enzyme is a protein; proteins are polymers of amino acids with molecular weights
in the range of about 10* to 10° daltons. Only the L-isomer of each amino acid
can be incorporated into proteins. Twenty-one different amino acids are typically
used. The sequence of amino acids gives the protein its primary structure.
However, an enzyme can only function if it assumes the appropriate three-
dimensional structure (e.g. secondary and tertiary structure) which depends on
hydrogen bonds, disulfide bonds, and salt bonds as well as hydrophobic and
hydrqphnhc interactions. Since these bonds are relatively weak, most enzymes
retain their three-dimensional shape and activity over a relatively small range of
temperature and pH.

Proteins (which can have a structural roles as well as being enzymes) constitute
about S0 to 70% of the cell’'s dry weight. The *“blueprint” for each protein is
encoded on the cell’'s DNA or chromosome. The code for each protein can be
transcribed to a messenger RNA molecule (m-RNA). The message is then
translated into an actual protein molecule using ribosomes (which contain both
r-RNA and proteins) as the machinery for protein production. Adapter molecules
referred to as transfer RNA or t-RNA bring the individual amino acids to the site
for protein synthesis. Typical rates of protein synthesis are twenty amino acids per
second per ribosome. The quantity of RNA in a cell is controlled to match the
cell’s requirement for protein synthesis and can vary from about 5 to 20% of the
cell’s dry weight.

The other major fraction of the cell’s mass is associated with the cell envelope.
The purpose of the cell envelope is two fold. The first is to provide a sclective
barrier to allow the passage of selected molecules in or out of the cell’s cytoplasm
while preventing the entrance or escape of other molecules. The second is to
provide structural integrity and cell shape. The laczr is particularly important since
the osmotic pressure inside a bactenial cell can be quite high.
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FIGURE 1 Eflect of different rates of growth on the cell mass and chemical composition of
Acrobacter aerogenes maintained in continuous culture (from Herbert, 1961; with permission).

The cell adjusts its composition to optimize either its chances of growth or of
survival depending on the external environment. For example Figure 1 shows how
bacterial composition can change with growth rate in a chemostat (or CFSTR).

These changes reflect clifinges in the biosynthetic capabilities or profile of
enzymes. Enzyme activity which is no longer needed is modulated by smali
molecular weight effectors. For example feedback inhibition (usually the end
product of the reaction pathway combines with the enzyme controlling entry into
the pathway and alters the three dimensional shape of the enzyme and hence its
activity) is a short term strategy. The longer term strategy is the regulation of
enzyme synthesis often in the form of feedback repression. These mechanisms
allow the cell to change its chemical structure in response to alterations in its
external environment.

The key point from this section is that a living cell is a “catalyst” of high
flexibility. The cell’s biosynthetic capabilities can change significantly. A model
that aspires to mimic a population’s biosynthetic capability must be cognizant that
the cells chemical structure is highly dynamic.

MODEL CHARACTERISTICS

A conceptual framework for classifying models of microbial populations was
first suggested by Tsuchiya, Fredrickson, and Aris (1966). This framework has
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been retained although there is no universal agreement on terminology. Harder
and Roels (1982) have written a recent review on structured models which
analyzes some of these concepts in detail.

Models can be deterministic or probabilistic. A deterministic model allows the
exact prediction of future behavior based on specifying the current state vector.
Generally a total population greater than 10,000 is sufficient to allow treatment of
the system as deterministic. Since most systems of engineering interest contain
microbial populations well in excess of 10,000 we will restrict our attention to
deterministic models.

Models are generally **structured” or “unstructured”. An unstructured model
assumes that a single variable is adequate to describe the population. Typically
this single variable is related to the quantity of biomass. Implicit in such models 1s
the ideca that the biosynthetic capabilitics of the population are invariant.

A structured model divides the population into subcomponents. With a pure
culture (only one species present) the addition of structure is most often accom-
plished by dividing the biosphere into two or more recognizable chemical sub-
components (e.g. RNA, protein, storage compounds, ectc.). To more exactly
characterize models, we introduce the term ‘‘chemically structured” to describe
such amodel. A mixed population (e.g. one containing two or more biological species)
can be structured either chemically or by explicit recognition of each species. In
the latter case the biosphere has structure in that subcomponents are recognized
and the biosynthetic capability of the population will shift as the ratios of species
changes. However, the model for each species nced not be (and usually is not)
chemically structured. We introduce the term “non-chemically structured” to
describe such systems.

A special form of non-chemically structured models for pure populations is one
that recognizes that a population is made up 6f distinct individuals. This form of
structure is referred to as “‘segregation”. A segregated model explicitly recognizes
the distribution of properties among a population. A “‘non-segregated” model
(also referred to as “dist(ibu(i_vé” or “continuum’’) views the cell mass as a
lumped biomass which interacts as a whole with its environment. The non-

‘s'é'g'rcgated model is satisfactory as long as the properties of the culture can be
adequately represented by averages. However, in some important and practical
situations moments higher than first-order are important.

Consider a population of genetically-modified cells in which the number of
plasmids is distributed non-uniformly. A plasmid is an extrachromosomal piece of
DNA which can be manipulated to code for.a foreign protein and then inserted
into a cell. With an inducible promoter the amount of protein made per genc
could be different in different cells since gene expression is a function of
intracellular concentrations of inducer (essentially the same in all cells), of
repressor (potentially variable if the repressor gene is encoded on the plasmid)
and of binding sites on the gene of interest (related to plasmid number). Thus
total protein production could be different in a population with a wide distribution
of plasmid number per cell than in a population witt a uniform population. An
even more extreme example is the casec where some cells can completely shed a
plasmid. Some cells might have thirty or forty copics of a plasmid while some
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have none. The cells without plasmids are freed of the ‘“‘metabolic burden”
imposed by spending resources on plasmid-encoded functions which do not
benefit the host cell. Thus cells without plasmid can grow more rapidly than those
with plasmids and can in a few generations displace the slower growing but
productive plasmid carrying cells. Thus a culture where every cell has ten plasmids
will be potentially much more productive than one where half the cells have
twenty plasmids while the other half have none. The productivity of such cultures
cannot be adequately forecasted by non-segregated cultures.

With these concepts of structure (“‘chemical structure’”, ‘“‘non-chemical struc-
tured”, and segregation) the role these models are required to fulfill can be
delineated. First the concept of “balanced growth’ needs to be defined. Campbell
(1957) originally wrote **. . . it will be convenient to say growth is balanced over a
ume nterval if, during that interval, every extensive property of the growing
svstem increases bv the same factor™. Basically in balanced growth the composi-
non of 1 “typical™ cell 1s time invariant. Typical balanced growth situations are
cxponential prowth (growth under nutrient saturated conditions) in batch culture
and steadv-state conditions in a CESTR (or chemostat).

Intuihively one might suspect that a non-structured model might be satisfactory
to describe a balanced growih situation since the biosynthetic capability of the
cellular population is constant and only the quantity of biomass is required. On
the other hand. most growth situations are associated with constantly changing
biosynthetic capacities: transient responses in a single-state CFSTR, all behavior
(steady-state or transient) in a multiple-staged CFSTR, and batch growth other
than the exponential phase (see Barford and co-workers (1982)). Under such
dynamic conditions one would suspect that a model would have to contain some
type of structure to capture the behavior of a culture with variable biosynth ‘tic
capabilities. Such intuitive arguments are supported by mathematical derivations
(originally demonstrated by Fredrickson et al. (1971) and more recently discussed
by Harder and Roels (1982)). The mathematical derivations have shown that only
structured models can possibly predict the growth-of microbial populations during
unbalag‘gcd growth. Unbalanced growth must be considered in designing bioreac-
tors.

The design of a bioreactor system {(number of reactors, batch or continuous,
steady-state operation versus cyclic operation) and of a process control strategy
for such systems is significantly aided by good models and clearly these must be
structured models. Additionally such models offer important vehicles to test
hypotheses about cellular control mechanisms and the prediction of the dynamic
response of a bioreactor is a much more severe test of a model and its input
mechanisms than is the prediction of only steady-state behavior.

This author believes that models of cell populations can only be complete if
they contain both *“‘chemical structure™ and “segregation”. Models which contain
only “chemical structure”, or “non-chemical structure’” or “segregation’ are
significant improvements over unstructured models but in each case ignore poten-
tially crucial features in the performance of the cell population. However, models
which contain both *‘chemical structure™ and “‘segregation” are complex and
consequently forms with only one-type of structure are morc easily constructed
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and require less computational time. The engincer must strike the balance
between reality and practicality. :
CONSTRUCTION OF CHEMICALLY STRUCTURED MODELS
i
The first step to the construction of any mathematical model is the development 1‘

of a conceptual model. Here an understanding of cell biology is indispensible.

The first decision is whether segregation is to be considered; for the purposes of
this initial illustration assume that a non-segregated model is to be considered.
Further, consider a batch reactor with an initially specified volume of fluid. The
fluid is divided into two compartments—one abiotic and one biotic, representing
the biomass. Clearly the growth of the cell population will result in an increase in
the volume of the biotic mass, while the volume of the abiotic compartment will
decrease. Many structured models have not adequately accounted for the changes
in volume of these compartments.

The second decision is how to subdivide the cell biomass 1nto compartments.
For a chemically structured model at least two components must be specified. The
other extreme would be a model which divided the cell into all of its chemical
components. Since even a simple bacterium will have over a 1000 chemical
species, such a model is unrealistic. The actual number chosen will represent a
compromise between physical reality and mathematical complexity and will vary
accordingly to the goals of the modeler. It is important that all chemical species be
included by lumping them into a recognizable model component (c.g. all protein is
represented by component P). Models intent on testing ccllular control mechan-
isms will usually require the greatest detail. -

The third step is to postulate the relationships among components. Typically a
series of pseudo-chemical reactions are written. For example:

Ci+(IC,+'-"———~>Ck+--' (1N

where C, C;, and C, are the intraceliular or intrinsic concentrations of compo-
nents i, j, and k, and o is a stoichiometeric coefficicnt. Equation (1) suggest that
components i and j combine (ratio of amounts of j to i is «) to form k. Other
unaccounted components may be involved in the rcaction as products. The
reaction represented by Eq. (1) is not a single enzymatic step but may represent
many such steps. The pseudo-chemical reactions are uscd basically to keep track
of the stoichimetry.

Since non-elementary reactions are used, the reaction kincties are normally
more complex than suggested by a cursory glance ut Eq. (1) The kineuc
expressions which are postulated must relate to the chenucal conversion i kg (1)
but will consider cellular control mechanisms and other interactions. bFor example
a possibie kinetic expression for Eq. (1) might be:

C C
el
P K+ C/\K, + C '

where r,, is the rate of formation of k by the ath process, A, 15 rate constant
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(units of gm k/L cell volume-h), C; and C; are the intrinsic concentration of i and
j, and K, and K; are saturation parameters. Saturation kinetics were used in Eq.
(2) to suggest enzyme kinetics and would give the appropriate behavior in the
extremes. That is zero reaction if either i or j were absent and a constant rate of
reaction when i and j are in excess. For a single enzyme with two substrates the
reaction form in Eq. (2) can be derived as a special case of two-substrate enzyme
kinetics (Mahler and Cordes, 1966). However, under most circumstances the
conversion of i and j to k requires multiple enzyme steps. In such cases the
approach of Kacser and Burns (1968, 1973) can be used to more rigorously derive
an overall kinetic expression, at least for simple pathways. The expression in Eq.
(2) may well be incomplete. For example, many enzymes or pathways are subject
to feedback inhibition by the product of the pathway. In such cases Eq. (2) might

be written as N
k k r
I\p Ck K.— Ci K' C’

where C, is the intrinsic concentration of k and K, is an inhibition constant. Such
a modification will mimic feedback inhibition by giving a decreased reaction rate
in the presence of a high concentration of k.

Since model components {, j, and k may be aggregates of many chemical
species, it is often impossible to exactly capture the basic chemical kinetics. The
modeler must then be content with expressions that are counsistent with observed
overall mass balances (e.g. at the cell’'s maximum growth rate zgm of k are
formed per h) and give the right general dependencies on all substrates and
modifiers. If a single enzyme controls then it is possible to relate the saturation
parameters in expressions like Eq. (2) to actual experimental values. Otherwise
the saturation parameters should be related to the normal intracellular levels of
components (i, j,~and k).

Once the reaction kinetics have been determined an overall model can be
formulgted to predict the dynamic response of the culture. In writing the reactor
balances the modeler must remain aware of the expanding nature of the biomass
and the necessity to write the kinetics in terms of intrinsic concentrations. Clearly
the enzymes within a cell only respond to intracellular concentrations. One
exception is that the extrinsic concentration (gm/L or reactor volume) of sub-
strates can be used. The use of the abiotic concentrations with substrates implies
that the intracellular and extracellular concentration of substrate are in dynamic
equilibriumn. During transient response this assumption may be weak and explicit
recognition of extracellular and intracellular concentrations of substrate must be
made.

Although these coastraints are fairly obvious, they have been ignored in many
chemically structured models. Fredrickson (1976) was the first to point out this
error. The correct formulation of a chemically structured, non-segregated model
for a non-flow reactor is:

dldt(m VC,) = :}1\72 I (4)

1
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where: m = total biomass in the system at time ¢
V= volume of biomaterial per unit of biomass
C; = mass of the jth component of biomaterial per unit volume biomatenal
at time t—essentially the intrinsic concentration of j
r,;=rate per unit volume of biomaterial at which the jth component of
biomaterial appears (or disappears) because of the ath process
Normally V will be a constant and is essentially the reciprocal of the cellular dry
weight density. Equation (4) can be rearranged to yield:

dCJdt =Y, r,,~ uGC, (5)
where: i

w=1/mdm/dt (6)

The symbol p is the specific growth rate, h™', and the term - C,” represents the
dilution of intracellular components brought about by growth. It is this term
which has been neglected in many structured models.

The above equations could also be written in terms of mass concentrations.
That is X; (mass of jth component per unit mass of biomaterial) instead of C,.
Clearly X; = C,.V_ Other formulations of the same concept can be used.

Although the above approach was illustrated for non-segregated models, the
gencral concepts apply to at least some forms of segregated models (e.g. those
involving construction of population models from single-cell models using a
finite-representation technique).

Some characteristics of good chemically structured models are:

1. A minimum of adjustable parameters; most parameters should be determined
directly from independent experiments or estimated by-an objective series of
rules,

. Mathematically tractable,

. High-fidelity to biological processes, and

. Be experimentally verifiable.

(NI S

PN

With these basic concepts in hand we can turn our attention to examples of
chemically structured models. It is not the purpose of this paper to exhaustively
review all models but to illustrate various approaches to modeling.

EXAMPLES OF CHEMICALLY STRUCTURED MODELS

Two of the first chemically structured models proposed were those by Ramkrishna
et al. (1967) and Williams (1967). Both were two component models. Ramkrishna
et al. (1967) divided the cell population into a G-mass (RNA and DNA) and a
D-mass (proteins (and by implication rest of the cell mass)). Williams (1967) split
the cell mass into a synthctic component (primarily RNA) and a structural-genetic
component (primarily DNA and protcin).

These models were major conceptual breakthroughs in the art of modeling the
growth of cell populations. Both models and many that followed have been flawed
by not including intrinsic concentrations of internal cell components.

- YT T T~ e

i i




STRUCTURED MODELS FOR BIOREACTORS 169

To illustrate these approaches consider Williams’ (1967) original model. in the
original model the following components were defined:

A = concentration (mass per unit volume of reactor) of limiting nutrient
D = concentration (mass per unit volume of reactor) of structural and genetic

component
R = concentration (mass per unit volume of reactor) of structural and genctic

M =total biomass= R+ D
All of the above are extrinsic concentrations. Williams (1967) assumed that
component A was extracted from the medium and used to produce component R.
Component D was assumed to be formed from R. The following equations were
then postulated for R and D formation:
dRldi = k,AM - k,RD 7
dD/dt = k,RD (8)

The above equations are conceptually incorrect since they are based on extrinsic
concentrations of intracellular components.
The correct expression for Eq. (7) can be written:

dRidt = M [k;AM/M)~ko(RIM)(D/M)) 9

Rate of Biomass rate of rate of conversion

change of R concentration nutrient of R into D per

concentration uptake per unit biomaterial

unit mass
of biomaterial
or -
RD '

dRjdt =k, AM —ky = (10)

which is clearly different than Eq. (7). Equation (4) could also have been used
directly to derive Eq. (10): i.e.

d(R/M)/dr=klA(R/M+D/Nf)—k2-KQ—pLR/M (11)
MM
Equation (11) reduces directly to (10) when the differentiation on the left hand
side of (11) is carried out, and the definition for u (u = I/M dM/dt) is substituted
into (11).
The correct expression for the D component is

dD/dt = M[k,RIM - DIMY = k,RDIM (12)

which is different from Eq. (8).

The above discussion says nothing about the reasonableness of the kinetic
expressions chosen by Williams (1967), but only ihe correct conversion of those
kinetic concepts into mathematical terms. A potential point of disagreement, for
example, could be whether biomolecular kinctics or saturation kinetics would be
preferable.

A better example of a simple chemically-structured, non-segregated model is
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the one described by Harder and -Roels (1982). They proposed a three-
compartment model. Three-compartment models have one distinct advantage
over two-compartment models; the addition of an extra component makes it
much easier to relate model components to chemical species and to the organiza-
tion of cell structure. Consequently the estimation of parameters from
experimental data is far easier with three compartment models than two.

The structure of their mode! is depicted in Figure 2. The K compartment is
RNA, the G compartment is protein, and R is the remainder of the biomass
consisting primarily of carbohydrates (including storage compounds), lipids, and
precursors. It is presumed that the limiting substrate (energy and carbon source)
enters the cell population and is immediately incorporated into the R component.
The K and G components are made from precursors in the R component, and K
and G can be degraded (“turn-over™) to yield precursors which return to the R
compartment.

The kinetic expressions suggested by Harder and Roels (1982) were based
explicitly on assuming a pseudo-steady-state for ATP (the cell’s energy currency)
and precursors. The justification for such a hypothesis is that the relaxation times
for adaptation of ATP and precursor concentrations are much less than for the
other components (K, G, and R). Yield coefficicnts {(essentially stoichiometric
coefficients) based on ATP and precursors can be estimated from a knowledge of
basic cell biochemistry and coupled to the requirements for the uptake of
substrate.

This model satisfies most of the constraints of a good model and has the virtue
of being computationally simple. One disadvantage of the model includes the
assumption of a very tight coupling of ATP production with ATP needs—an
assumption which ignores energy-spilling reactions (see Stouthamer. 1979).
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FIGURE 2 Schematic representation of a three-compartment chemically structured growth model
(from Harder and Roels, 1982; reproduced with permission).
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Further, the kinetic relationships among K, G, and R are based on relationships
from steady-state continuous culture. experiments, and consequently may be
inadequate for predicting transient responses. The other criticism is that the
model was to be applied to an activated sludge system; consequently, the authors
implicitly assumed that parameters derived primarily from studies on E. coli in
pure culture could represent the average parameters from a very diverse group of
organisms. Interactions among species in the population were ignored. Some, such
as predation by protozoa on bacteria, would be expected 10 alter parameter values
and would give the observed value of the parameters a time dependence since the
ratio of protozoa to bacteria can be time dependent. Nonetheless such three
compartment models represent an attractive approach, particularly for pure
cultures, when computational speed is important and the available data base for
parameter estimation is small.

Another approach to structure is 1o view the cell as a process and provide
structure by dividing the process into distinct steps. Chiam and Harris (1982) have
developed a simple model of this form (see Figure 3). This model was tested by
comparison to the data of Mor and Fiechter (1968) (see Figure 4) and the model
predictions are in reasonable accord. Unlike the simple unstructured Monod
equation, the model predicts a decrease in yield coefficient at both high and low
dilution rates as observed in this phenol utilizing system. This comparison is not a

SUBSTRATE A IN AQUEOUS (ABIOTIC) PHASE
ASSIMILATION \ STEP 1.
‘ -

SUBSTRATE A IN BIOTIC PHASE

STEP 2.

INTERMEDIATE B IN BIOTIC PHASE

JETABOLISM src;/ \STEP .

BIOMATERIAL C (MAINTENANCE ENERGY)
ORGANIC PRODUCT E ORGANIC PROOUCT €
CARBON DIOXIDE F CARBON DIOXIDE F

L
STEP /

EXCRETION  {  GacaNIC PRODUCT E IN AQUEOUS PHASE
CARBON DIOXIDE F IN GAS PHASE

L

FIGURE 3 Schematic representation of a model structured from a process perspective (from Chiam
and Harris, 1982 with reproduced permission).
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FIGURE 4 Comparison of predictions from Chiam and Harris (1982) with the daia of Mor and
Fiechter (1968). Points refer to experimental data and the continuous line to model predictions. The
parameter values were obtained from a fitting technique {from Chiam and Harris, 1982; reproduced
with permission).

very stringent test of the model’s capabilities; the prEdiction of steady-state
behavior is far easier to achieve than the prediction of transiént responses.

A novel approach to structure which avoids the use of complex kinetic
pathways has been advocated by Ramkrishna (1983). This “cybernetic perspec-
tive” assumes that the cell behaves optimally with regard to the allocation of
existing resources among parallel enzyme-synthesis systems.- This approach has
been applied with some success to growth in multiple substrate systems.

A large number of other structured non-segregated models have been written
(see Bazin, 1982 for other examples). Such models may be fitted to transient
response data and give reasonable correlations of experimental data. However,
such models cannot give a priori quantitative predictions of population responsc
to transient conditions over a range of growth conditions using inoculum from
different environments (see Daigger and Grady, 1982). The approach described in
the next section, single-cell models as a basis for population models, can make
such predictions.

SINGLE-CELL MODELS AS A BASIS FOR POPULATION MODELS

The previous models have looked at the cell population as a lumped biomass. An
alternative view is to recognize that a cell population represents a complex
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averaging of the biosynthetic capabilities of individual members of the popula-
tion. The remainder of this paper is devoted to the single cell perspective. A type
of chemically-structured, non-segregated model is created when we construct a
single-cell model and view that single-cell as representing an ‘“‘average’ cell in the
population. A population model containing both chemical-structure and segrega-
tion can be constructed by using a finite-representation technique whereby a
fraction of the total population is represented by a single-cell model. Such models
can predict the distribution of biosynthetic or other properties within the popula-
tion. Shuler, Leung, and Dick (1979) first suggested this possibility as a means to
avoid the mathematical difficulties of solving the integro-differential equations
involved in writing a chemically-structured segregated model from the population
point of view.

The use of single-cell models to predict the average behavior of a cell in a
population has several potential advantages. Certainly such models make it easier
to incorporate biochemical structure imo a model; cell gcometry (e.g. surface to
volume ratios) can be readily incorporated; and temporal events or spatial effects
can be included that would be virtually impossible to incorporate into lumped
biomass models. As discussed, the single-cell modeling approach can be readily
extended to develop chemically-structured segregated models of cell populations.

One of the first examples of single-cell models was that suggested by Von
Bertalanfty (see Tsuchiya er al., 1966) in 1942. In his model growth was a result
of competition between the processes for nutrient assimilation and for endogen-
ous metabolism. Many examples of other single-cell models could be given (see
Shuler and Domach, 1983), but most are flawed by unrealistic constraints on
cellular growth mechanisms or do not reflect current understanding of cell
biology.

An ambitious type of single-cell model which is biologically sound is one
proposed by Lee and Bailey (1984a) for the production of plasmid encoded
proteins. A schematic of the model is given as Figure 5. The biochemical events
controlling the replication of the plasmid A dV are well known and can be
accurately modeled (Lee and Bailey, 1984b, 1984c). In addition accurate models
have been formulated for the lac promoter (Van Dedem and Moo Young, 1973;
Imanaka and Aiba, 1977; Gondo et al., 1978). An inducible promoter is a
chemical switch which can turn on or off the transcription and translation of
information coded on a gene into a functional protein. Lee and Bailey (1984a)
have incorporated detailed molecular models of plasmid replication and lac
promoter with semi-empirical expressions for host cell functions. The model
assumes regular plasmid segregation (i.e. each daughter cell formed by binary
fission receives an equal number of plasmids). This model is a chemically
structured non-segregated model, since it is based on a single-cell as an average
cell in the population representative of the total population.

The model by Lee and Bailey (1984a) has a larger number of parameters than
those models previously discussed. However, these parameters can largely be
evaluated from independent experiments, and the structure of the equations for
plasmid replication and for gene expression are consistent with our knowledge of
molecular biology. The model is a quite power.ul one. Models with a large
number of independently determinable parameters embedded in a kinetic structure
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FIGURE S Schematic of Lee and Bailey's (1984a) model for AdV plasmid replicon and its
interaction with E. coli host cell functions. Definition of symbols are: [ =initiator protein, R =
repressor protein, G = number of plasmid molecules per cell, ori* = activated origin, REP = replication
complex, mRNA, = messenger RNA for repressor protein, mRNA, = messenger RNA for initiator
protein, F = termination efficiency, and n = transcription efficiency. The dotted line shows the regulat-
ory action of repressor protein and initiator protein. Traces (a), (b), and {c} represent replication,
transcription, and translation processes, respectively. Line (d) indicates the involvement of replication
protein of the host cell in formation of replication initiation complexes (from Lec and Bailey, 1984a;
with permission).

consistent with experimental observations are, at least in principle, intninsically
superior to models with three or four empirical parameters, particularly when the
empirical model structure cannot reflect known kinetic interactions. This superior-
ity is reflected primarily in testing hypotheses concerning cellular mechanisms and
in making predictions on growth dynamics different from the initial data base. The
construction of models with complex kinetic structures are generally not practical
for engineering applications unless a fairly extensive data base already exists.
Fortunately the explosion in the literature in cellular and molecular biology
provides an ample and generally untapped base for such model building. Once the
engineer is readily acquainted with such literature, the construction of complex
models is not difficult or unduly time-consuming.

Adequate experimental data to rigorously test the model predictions under a
wide variety of growth conditions are not currently available. However, Lee and
Bailey (1984a) have presented a comparison (see Figurc 6) of predictions of
recombinant protein activity to data on the activity of plasmid encoded B-
lactamase. The model predictions are generalized for the production of an
unspecified protein, so that a comparison to 8-lactamase requires an estimate of
the specific rate of decay for B-lactamase. Satisfactory agreement of predictions
and experiment were obtained for a decay rate of ca. 0.001 min '

However, the model can be criticized, primarily for the simplifying assumptions
involved in the integration of the kinetic expressions for plasmid replication and
gene expression with host cell functions. The host cell functions are empirical
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FIGURE 6 The effect of growth rate on cloned-gene protein. Assumed decay constants of product
protein are given near each curve (units are min~'). The experimental data (@) were taken from
Engberg and Nordstrom (1975). (Figure from Lee and Bailey, 1984; reproduced with permission.)

relationships for cell replication, transcription, and translation processes. They
are soundly based on experimental observations. These empirical expressions
require as input a value for the celi’'s growth rate, u. The host cell functions do
not respond explicitly to changes in the abiotic environment such as concentration
of a limiting-nutrient. Thus the model is restricted to the range of growth rate
used to establish the empirical expressions and may well fail under..transient
growth conditions where substrate concentrations and growth-rate become de-
coupled. .

Another potential weakness is that the model assumes that the host cell
functions are not altered by interactions with the replication of plasmids and
expression of r-protein synthesis. The presence of the “‘metabolic burden’ posed
by plasmid encoded functions will alter cell growth rates. Although ;+ = 0.8 gen/hr
in a glycerol minimal medium for the wild-type cell, the growth rate of the
genetically-modified cell will almost certainly be less. How much less is difficult to
predict, and it is not clear to this author how the model could predict such
difterences or how to use the model without an experimental knowledge of the
actual growth rate of the recombinant organism.

These comments suggests ways in which the model is limited. The reader should
nonetheless be aware of the pioneering nature of the model and of its importance.
This model is the best one currently available to explore important questions on
mechanistic control of plasmid copy number and of gene expression when the
growth rate is altered. Carcful attention to this type of model is warranted by both
experimentalists and modelers.

The model with the greatest fidelity to cellular biochemistry is probably the one
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suggested by the Shuler and colleagues (Shuler, Leung, and Dick, 1979; Shuler
and Domach, 1983; Domach et al., 1984; Domach and Shuler, 1984a, Lee, Ataai,
and Shuler, 1984; Ataai and Shuler, 1984a) for the bacterium, Escherichia coli. A
schematic of the single-cell model is given in Figure 7 as well as a definition of the
model components.

In this approach the cell is treated as an expanding reactor free to change shape
and volume and to respond explicitly to changes in glucose or ammonium
concentrations in a minimal medium. Glucose, and/or ammonium ion, can be the
limiting nutrient(s). This model contains sufficient detail that it provides a good
tool for quantitatively testing the plausibility of cellular control mechanisms. [t
provides a holistic view of the cell and questions about any subcomponent can be

£
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FIGURE 7 An idealized sketch of the model of E. coli B/rA growing in a glucose-ammonium salts
medium with glucose or ammonia as the limiting nutricat. At the time shown the cell has just
completed a round of DNA replication and initiated cross-wall formation and a new round of DNA
replication. Solid lines indicate the flow of material, while dashed lines indicate flow of information.
Reproduced with permission from Shuler and Domach, 1983.

A, =ammonium jon M;,, =messenger RNA
A, =glucose (and associated compounds in M,=DNA
the cell) M, = non-protein part of ceil envelope (as-
W =waste products (CO,, H,0, and ace- sume 16.7% peptidoglycan, 47.6%
tate) formed from energy mectabolism lipid, and 35.7% polysaccharide)
during acrobic growth M, = glycogen
P, = amino acids PG = ppGpp
P, = ribonucleotides E,, E5 = molecules involved in directing cross-
P, = deoxyribonucleotides wall formation and cell envelope
P, = cell envelope precursors synthesis—the approach used in the
M, =protein (both cytoplasmic and en- prototype model was used here but
velope) more recent experimental support is
M,, . =immature “stable” RNA available
Ml.m = mature “stable” RNA (r-RNA and r- GLN = glutamine
RNA—assume 85% r-RNA through- E, = gluta.nine synthctase
out) *—the matenal is present in the cxternal environment.
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examined in detail and still be related to the observable performance of the whole
cell. The model also provides a 100l to test the translation of in vitro results to in
vivo ones.

The cell is treated as an expanding reactor and mass balances can be written for
each component. The equations are too complicated to justify a detailed listing
here but such listings are available in original references (Shuler and Domach,
1983; Domach et al., 1984). As an example, consider the equation for DNA

synthesis:
PV )( A,V )
d = ( - F 13
M,/dt = M, Ko+ PAV \Kpyp + AV (13)

where M, is amount (not concentration) of DNA_ t 1s time, Py 18 the amount of
deoxynucleotides, A, is the amount of intracellular glucose and low molecular
organics, V is the cell volume, £ is the number of replication forks, w4 is a rate
constant for the maximum rate of DNA formation per fork, and Ky, p, and Ky 4,
are saturation constants. The value of py is readily determined from published
values for the size of the chromosome, the number of forks present, and
measurements of the time required for the fork to transverse the chromosome
under maximum growth conditions. A value for Ky, s directly available from the

literature. The value for Ky, ., was estimated as 1/25th of the normal intracellu-

lar value of A, at maximum growth in minimal medium. The determination of F

involves a separate set of equations associated with the control of imtiation of
chromosome replication. The model was used to test the plausibility of six
hypotheses about mechanisms -ontrolling initiation and found only one mechan-
ism and its modifications -eould make guantitatively plausible predicuons about
the observable pattern of chromosome replication.

The model is complex with a large number of kinctic parameters. Most of the
88 parameters could be estimated independently as described in the previous
paragraph for Eq. (13). Four parameters, associated with the rate of cross-wall
formation were determined by running the mode!l at conditions supporting
maximum growth and at a glucose concentration supporting approximately half-
maximal growth rate. The values of these parameters were manipulated primanly
to obtain the right septation rate as evidenced by reascaable predictions on cell
geometry and the length of time between chromosome termination and cell
division-and the actual time of chromosome replication. Extenston of the model to
predictions of the response to nitrogen-limitation required no adjustable
parameters—only values obtained from in vitro expeniments on the key enzymes
for ammonium incorporation into the cell. Thus without the addion of any
adjusiable parameters the model can adequately predict system response to
growth at a variety of ammonium concentrations (Shuler and Domach, 1983). The
model makes quite reasonable predictions of steadv-state cell behavior. See for
example Figure 8.

The model has also demonstrated the capacity to make predictions about
cellular behavior prior to the actual confirming cxperimental observations. In the
prototype model (Shuler et al., 1979) we found that tiie cell width varied slightly
during the cell cycle. Marr, Harvey, and Tentini (1966) had mcasured cell widths
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FIGURE 8 Variation of cell volume with steady-state growth rate. Model predictions for glucose-
limited chemastat growth are indicated by the solid line while experimental data (Couiter Counter
measurements) for glucose limited growth are indicated with a dashed line, while the corresponding
data are given as A. Data from Helmstetter (1974) for glucose-limited growth is given by R
Reproduced with permission from Shuler and Domach, 1983.

and concluded that the cell width was constant throughout the cell cycle. Their
technique, however, was precise to only +0.03 um and the variation within the
model cell cycle was nearly within this limit. The model’s prediction of varying
width during the cell cycle was confirmed by experimental evidence from Trueba
and Woldringh (1980). They observed about a 8% difference in cell width
between the extremes of the division cycle with somewhat larger percent devia-
tions with slow growing cells. The minimum width was observed to occur just
before cell constriction was readily visible. In Domach er al. (1984) the maximum
predicted variation in width was 8, 9, and 9% at specific growth rates of 0.95,
0.51, and 0.24 h™}, respectively. The minimum widih was predicted to occur after
the initiation of cross-wall synthesis but before 50% constriction with the actual
timing of the minimum point being dependent on growth rate. The ability of the
model to make significant quantitatively accurate predictions about cell behavior
prior to the actual observation of such behavior provides strong support for the
fidelity of the model to actual cell biology and fc- the robustness of the model.
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The model has been extended to anaerobic growth situations by altering the
mechanism for energy generation in the cell (Ataai and Shuler, 1985a). Carbon
and electron balances must be added so that the amount of ATP and reducing
power generated meet the requirements for consumption. The anaerobic model,
which left the non-energy related part of the aerobic model intact, can make
accurate predictions of cell size, cell composition, growth rate, and amount and
composition of metabolic end products (primarily acetate and ethanol and succi-
nate) (see Figure 9). One conclusion from this work is that all non-energy
producing processes remain unaltered in kinetics when a faculative organism
switches from aerobic to an anaerobic growth. Thus the base model has proven to
be a robust one capable of extension to growth conditions significantly different
from those used in its initial derivation.

A single-cell model when used to represent an average cell 1s a form of a
chemically-structured non-segregated model. Certain behavior can only be pre-
dicted by recognizing the differences among individuals in a population. Unlike
other non-segregated models a single-cell model can be easily incorporated into a
population model (Shuler, Leung, and Dick (1979)). Three examples of the
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FIGURE 9  Etlect of growth rate on cell volume and by product formation for anaerobic glucose-
limited chemostat growth of E. coli. The basis of the experiment is 1 mole of glucose fermented. The
dotted line is the model’s prediction of the total ethanol plus succinate formed while & represent
experimental measurements. The dashed line is the model's predicion of acetate {ormed while 8
represents the amount of acetate experimentally measured. The predicted cell size is indicated by the
solid line and the cell volume measured by the Coulter Counter is given as @ No adjustable
parameters were used in obtaining these results. Data from Araai and Shuler, 1985a
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construction of population models are given by Nishimura and Bailey (1980),
Alberghina, Martegani, and Mariani (1982) and Domach and Shuler (1984b).

Nishimura and Bailey (1980; 1981) have demonstrated the feasibility of con-
structing a population model from a knowledge of a single-cell kinetics and
mechanisms for control of replication. The general approach is detailed in Figure
10. Semi-empirical relationships for the timing of cell division, cell growth, and
the timing of initiation of DNA replication were used as the basis for the
single-cell model for E. coli. The single-cell model is chemically structured in that
DNA content and total cell mass are both included. The DNA configuration at
any time is known and consequently gene dosage can be readily calculated.
Nishimura and Bailey (1980) accomplished the difficult 1ask of determining the
analytical solution of the distribution of cell mass and DNA content in a
population of E. coli. The required input for the model was the cellular specific
growth rate u(r). The resulting model was able 10 predict the correct trends (a
non-quantitative comparison) in transient responses to shift-up conditions (see
Figure 11).

The chief potential disadvantage in the model is that the cellular specific growth
rate u(t) is considered to be a known function of time. Additionally the timing of
the cell division cycle is deterministic once w(t) is specified. In reality a probabilis-
tic approach is necessary since there is a distribution of division times among cells
in balanced growth for a culture at a known growth rate. Consequently the
property distributions are likely to be broader than prediction by this model.

A population mode with a more detailed chemical structure and the ability to
explicitly respond to external changes in nutrient levels has been constructed from
our single-cell model (Shuler and Domach, 1983; Domach and Shuler, 1984b).
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FIGURE 10 Schematic of a model for coordinated mass and DNA synthesis and cell division for
individual cells of E. coli. Donachie refers (o a simple model relating cell growth 1o nanon of
chromosome replication (Donachie, 1968). Cooper-Helmstetter refers to a model relating growth rate

10 the timing and rate of replication of the chromosome and the uming of cell division (Cooper and
Helmstetier, 1968) (reproduced with permission from Nishimura and Baiey, 1980).
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FIGURE 11 Calculated response of a bactenal CSTR 10 a step change in feed flow rate. The model
15 that of Nishimura and Baidley (1980) for F. coli. Curves DD, p, X, Y, and v are dilution rate, specihic
vrowth rate, and dimensionless cell mass, substrate, and cell number concentrations, respectively.
(Reproduced with permussion from Nishimura and Bailey, 1981).

The first step in constructing such a model requires the postulation and
confirmation of a cause for asynchrony in the cell division cycle. Domach and
Shuler (1984a) postulated that the random variations in the quantity of enzyme
responsible for cross-wall formation could result in the observed distributions in
cell division cycle rimes (7,) and cell size at division (m,). By including in the
single-cell model a random number generator for the quantty of enzyme pro-
duced for cross-wall formauon, the observed distributions in 74 and my can be
predicted (see Figure 12). The relative imprecisions predicted by the model (ratio
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FIGURE 12 Prediction of varniatons of tisson cell size and cycle tnme for individual cells of E. coli.
The cycle ime frequency Iplot a’ has a greater deviaton about its mean than fission size (plot b) and
the ratio of the coefhicients of vananon of cydle tme and fission size 1s 1.7 which agrees well with
reported observanions (repisd e ed with permission from Domach and Shuler, 1984a)
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of coefficient of variations of cycle time to fission size is 1.7) agree well with
experimental observations (Schaechter et al,, 1962). The correlation coefficient
calculated for parent-offspring cycle times was —0.4 which is slightly more positive
than the theoretical value of —0.5 calculated by Koch and Schaechter (1962) but
agrees well with the experimental value cited (—0.37). The negative correlation of
parent-offspring cycle times has been widely observed.

Using a single-cell mode! (Shuler and Domach, 1983; Domach et al., 1984;
Domach and Shuler, 1984a; Ataai and Shuler, 1985a) with suitable modifications
to account for asynchrony in the individual cell cycle allows for the construction of
a population model. We use a finite-representation techinique in which the
behavior of a smal fraction of the population is represented by a single computer
cell. The key item for the reader to note is that no adjustable parameters arc
added to the single cell model to make predictions on the behavior of a
population in a bioreactor.

Domach and Shuler (1984b) have used a population model consisting of 225
computer cells and mass balances on a CFSTR to predict the response of a culture
to upsets in reactor conditions (e.g. feed flow rates or substrate concentrations). A
flowsheet summarizing the operation of the population routine is given in Figure
13. Such a model accurately predicts the transient behavior of the culture (see
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FIGURE 13 A flow steet for the operation of a fine-representation population routine. Each
computer cell (i =1 to 225) is activated for a set “on time™ (AT =0.01 h). Once all 225 cells have
rcacted with the environment, a mass balance is done to determine substrate levels and washout of
cells. (Reproduced with permission from Domach and Shuler, 1984b).
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Figures 14 and 15) with respect to overall performance (e.g. substrate consump-
tion) and the time-dependent change of property distributions in the culture (e.g.
size distributions). Similarly Ataai and Shuler (1985b) have subjected a single cell
model for the anaerobic growth of E. coli B/rA to perturbations in flow rate and
glucose concentration in a glucose-limited chemostat. A comparison of model
predictions of RNA content and unconsumed glucose concentrations to actual
data for a step change in feed glucose concentration (1.0 q/L to 1.88 q/L) is given
in Figure 16. For a fiow perturbation (dilution rate of 0.38h™" t0 0.55h™") the
disturbance lasts longer (8 h vs 3.5h), and the amount of unconsumed glucose
reaches a higher level (ea. 180 mq/L vs 90 mg/L). The distribution of cell sizes is
also well predicted in both cases.

To understand the mmportance of this approach to chemically structured-
segregated models, the reader must realize that the attempt to generate models of
simifar characteristics from the population-balance point of view has been
impossible-—largely because the resulting equations have proved mathematically
mtractable.

Other attempts to develop models for the a priori quantitative predictions of
transient behavior of cell populations have been generally less successful than the
approach of using biologically detailed single-cell models in a finite-representation
scheme. Daigger and Grady (1982} have recently determined that the ability of
most other mathematical models (particularly structured models that presume that
the cellular level of RNA is alwavs growth rate limiting) 1o predict transient
responses i1s inadequate. Daigger and Grady (1982) concluded that the RNA level
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FIGURE 14 Transient response of aerobic glucose-himited chemostat with £ colt to a step decrease
in dilution rate from 0.91 h™! 10 0.65 h ' at me = 0. Model predictions of substrate concentration are
given by the solid line, while experimental values are given by @. Predictions of dimensionless cell
number are given by the dashed line, while the open circles (O) denote measured values. Predicted
variations in the RNA content of the cell are given by the dotted line. Mecasured values of the median
cell volume are reported in terms of threshold units on the Coultier Counter and displayed as the
dash-dot linc. The initial lag in cell response and physiological state is predicted by the model (c.g.
RNA content) and is consistent with the expenmental measurements on cell volume. Data and
predictions taken from Domach and Shuler (1984b).
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FIGURE 15 Shift in predicted and observed cell size distributions due 10 a step decrease in dilution
rate of 0.91h™! to 0.65h™' in an aerobic glucose-limited chemostat with E. coli. A finite-
representation technique using 225 single-cell models was used (Domach and Shuler, 1984b). The
model predictions are given as a histogram and each @ represents the relative amount of the
population in that cell class. The Coulter Counter measures cell volume and displays a continuous
trace, and the experimentally measured distribution is indicated by the cell line. A smoother prediction
of the cell size distribution can be obtained if the number of single-cells in the population routine is
increased. The medium cell volumes determinad were: 0.65 um?, 0.54 um?, 0.46 um?, and 0.42 um?
att=0, 2.88h, 4.0h, and 8.0 h, respectively. The model could be used to output distributions of any
parameter (e.g. RNA, DNA, etc.). Reproduced with permission from Domach and Shuler, 1984b.

did not exclusively control the nature of the transient response and that other
unidentified components varied with the steady-state specific growth rate that the
culture had been subjected to prior to shift-up.

Their observations are consistent with the view that a cell contains many
potentially growth-rate limiting steps and the actual controlling steps depend on
cell history and the nature of the shift. This view supports our contention that the
accurate a priori prediction of transient response requires models which mimic the
actual control systems in the cell; all of the major control systems must be
included because of their interactions and the potential for switches in the
combination of systems which may be growth-rate controlling. Thus a model
which aspires to accurate dynamic predictions ove: a range of growth conditions
must be complex. We believe that our single-cell model may be near the
minimum level of complexity to allow a priori quantitative predictions of transicnt
behavior over a reasonable range of experimental ccnditions. We currently have
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FIGURE 16. Transient response of an anacrobic glucose-limited chemostar with E. coli to a step
change in glucose feed concentration (from 1.0 g/L to 1.88 g/L). The predicted extrinsic concentration
of glucose in the reactor is shown by the solid line; the experimental values from two independent but
identical experiments are given as @ and A. The predicted transient in cellular RNA content is given
as a dotted line; the experimental values as Bl. The dashed line indicates the model prediction if those
predictions are normalized to the same initial RNA value as determined experimentally. It is
important to note that the model predictions are made without using adjustable parameters or a fitting
procedure. (Data from Ataai and Shuler, 1985b).

initiated a sensitivity analysis to better discern what steps may be most strongly
growth-rate affecting under a variety of growth conditions. Such an analysis may
suggest opportunities for reducing the complexity of our model, but we anticipate
that the chemical structure cannot be greatly altered without adversely effecting
the quality of predictions for transient behavior.

The use of finite-representation techniques offers other advantages. For exam-
ple such a model generates by itself the underlying distributions of cycle time and
division mass found in real populations. The partial integro-conservation equa-
tions in age- and mass-structured models (e.g. Fredrickson and Tsuchiya, 1963;
Eakman et al., 1966) require a prior knowledge of probability density functions.
The use of finite-representation techniques circumvznt the major problems in
population balance equations and require no input data once a complete single-
cell model is formulated.
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As currently practiced the finite-representation technique suffers a limitatio.
due to “peak wander”. Currently 225 cells represent the population. Within a
time increment of 0.01 h only about 10% of the population will undergo division
which results in a statistically small sample to be randomized. Due to the small
size of the sample, the model predicts slight variations in peak position and shape
even under steady-state growth conditions. The stability of the predicted size
distribution (or distribution of any other property) can be improved by increasing
the number of cells; the improvement would be proportional to the square-root of
the total population. An increase to 2,250 computer cells would result in rather
stable distributions but also would result in computational requirements that
would eliminate most mini computers as vehicles to run such programs.

The problem of “peak wander” is relatively munor in comparnison to the
engineering benefits. The ability to make a priori quantitative predictions of
transient behavior of a cell population should be a significant aid to the design
engineer. Such systems will allow the development and testing of process control
strategies and algorithms without recourse to slow and expensive experimenta-
tion. Further, the design of bioreactors in which a population undergoes transicnt
changes in environment (e.g. fed batch) could be expedited by such models.

As Bailey et al. (1983) have pointed out the paradigm:

molecular level control systems

{

single cell kinetics

!

microbial population dynamics

reactor productivity

is a powerful approach. Models which adopt this approgch are ultimately the ones
most likely to improve the design and operation of real bioreactors.

g,

SUMMARY

The introduction of chemical structure into models of microbial populations is
important in making accurate predictions of a population’s biosynthetic
capabilities and performance, particularly under transient conditions. The intro-
duction of chemical structure into population models can resuit in substantial
increases in complexity. The modeler must always make the complexity of the
model fit the objectives for which the model was constructed. When a detailed
knowledge of the distribution of biosynthetic capabilities in a population or when
accurate a priori prediction of transient responses is required a population model
based on a finite-representation technique is the preferred approach. The art of
constructing chemically-structured models is young (less than two decades old).
Significant opportunities to improve such models exist.
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NOMENCLATURE

A extrinsic concentration of limiting nutrient in William’s model, M/L?

A, extrinsic concentration of glucose as limiting nutrient in Shuler’s model,
M/}

C, intracellular (or intrinsic) concentration of the ith species, M/L?

D extrinsic concentration of structural and genetic component in William's
model, M/L?

F number of replication forks in Shuler’s model

k, rate constant for ath process, T™!

K, saturation parameter for ith species, M/L>

K, saturation-like parameter for feedback inhibition by product, M/L?

m total biomass in the system at time t, M

M extrinsic concentration of total biomass in William’s mode!, M/L?

M, amount of DNA/cell, M

Py amount of deoxyribonucleotides per cell, M

Fakc rate of formation of species k=by ath process based on biotic volume,
ML, T

R extrinsic concentration of synthetic component in William's Model, M/L?

{ time, T

\'% volume of single cell in Shuler’s model, L*

v volume of biomaterial per unit biomass, L*/M

X, mass of jth component per unit mass of biomaterial, M/M

Greek

@ stoichiometric coefficient, M/M

m specific growth rate, h™"
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6.1 INTRODUCTION

A living cell is an immensely complex self-regulated chemical reactor which responds to envir-
onmental stimuli (such as changes in nutrient levels, temperature and pH) by altering its internal
composition and biosynthetic capabilities. Such changes are not instantancous but reflect finite
time lags in the various biochemical pathways in the cell. Mathemaiical models that aspire to
reflect the basic nature of living organisms must recognize the dynamic nature of such organisms.

Such models are buiit to fulfill at least one of the following objectives: (1) discrimination
among possible mechanisms for the control of cellular processes. (2) bioreactor design and opti-
mization. and (3) process control. The requirements placed on the model building process will
differ with respect to the ultimate objective of the model builder.

Typically a model which seeks to be useful in mechanism discrimination at the subcellular level
must be very general (and hence complex) and contain a low level of empiricism. Such models
must accurately reflect the basic biochemistry of the cell. A high level of detail will invariably
require large numbers of parameters: it must be realized that this does not reflect on the validity
of a model. A 100-parameter model with no adjustable parameters may be intrinsically more
valid than a two-parameter model where both parameters must be adjusted. In models where
various subprocesses are self-regulated, and also regulated by the products of other subprocesses.,
the overall system response may be more dependent on model structure than on the values of the
kinetic parameters associated with any individual subsystem.

Such complex models must be closely tied to experimental data to retain validity. Experiments
are required for independent parameter estimation and to provide an information base for the
formulation of hypotheses about a subcellular control system or pathway. Model predictions
incorporating the various hypotheses must be tested against experimental results. Comparison to
predictions about the dynamic behavior of the system offers a more stringent test of validity than
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does comparison to steady-state experiments. The process is simply that experimental evidence
suggests models which lead to testable predictions and to further experiments which lead to
refinements in the model resulting in new hypotheses and experiments, erc.

The other extreme is the formulation of models solely for process control. In this case the
model builder is restricted to variables which can be readily determined on-line. Since the
number of variables which can be reliably measured on-line is small (particularly in commercial
systems), the model builder will use much simpler models than those intended for mechanism dis-
crimination. Such models generally contain a moderate level of empiricisni. particularly when
explicit measurements of the product are impossible and productivity must be correlated with
other more easily measured parameters. Consequently. models intended for process control will
be valid for a relatively narrow operating range of abiotic conditions and will have a minimal
number of parameters of which a large fraction may have to be obtained using curve-fitting pro-
cedures. The ultimate extreme would be the so-called ‘black box’ models.

Intermediate between these extremes are models intended to develop a more basic under-
standing of bioreactor performance or for the actual optimization of a process. Generality is
important if a broad range of reactor conditions and types are to be explored and consequently
the level of empiricism which can be tolerated is low. Since emphasis is on productivity. the level
of biochemical detail required will be tied directly to the nature of the product. Models used for
optimization will be mature models already subjected to substantial experimemal verification:
the results of the optimization undoubtedly require experimental validation but such an experi-
mental program would be less extensive than for either mechanism discrimination or control.

6.2 DEFINITIONS AND IMPLICATIONS
6.2.1 Balanced Growth

Campbell (1957) was probably the first to introduce the term ‘balanced growth”. He
wrote: . . . it will be convenient to say that growth is balanced over a time interval if. during that
interval, every extensive property of the growing system increases by the same factor’. His deti-
nition was based on the behavior of a large population of cells.

Barford and coworkers (1982) have sought to broaden this definition to include the growth of
individual cells and sustained oscillations by the culture as a whole. In this chapter we will aceept
the extension of the definition to an individual cell but not to the case of sustained oscillation in a
whole culture since the average concentration of cellular components per unit cell weight would
be time dependent. Balanced growth for an individual cell requires that each division cell be an
exact replica of the previous cycle.

If a culture is in balanced growth, each individual cell need not be in balanced growth (see the
data of Powell, 1958) but on the average a ‘typical’ cell within the culture will fulfill the defimition
of balanced growth.

6.2.2 Model Characteristics

Tsuchiya and coworkers (1966) in a pioneering review article suggested a conceptual frame-
work for classifying models of microbial cultures. This framework has been retained, although
the terminology has been modified through the years. Harder and Roels (1982) offer a well wnt-
ten summary of distinctions among models.

In this chapter we will concentrate on models which are deterministic rather than probabilistic. A
deterministic model allows the exact prediction of future behavior based on specifyving the current
state vector (essentially values for all variables in the model). Deterministic models become
increasingly valid as the number of individual members in the population increase. Generally a
total population greater than 10 000 is sufficient to treat the system as deterministic. Spectal con-
sideration must be given to synchronized or to synchronous cultures where “all” cells imtially
divide at the same time and cell number increases in a stepwise fashion. After a few generations
asynchrony develops as the distribution of cell division times broadens. Such behavior is determi-
nistic in that with a large cell number the future time course is predictable. However, the devel-
opment of asynchrony depends upon a random or probabilistic event within a population. Models
seeking to simulate such behavior must include some mechanism to recognize such randomness.

Models are generally ‘structured’ or ‘unstructured’. An unstructured model assumes that only a




Dynamic Modelling of Fermentation Systems 121

single variable such as cell number or dry weight is sufficient to describe the biosphere: in essence
only the quantity of biomass is important. A structured model allows the division of the biosphere
into two or more components. A model which i+ chemically structured divides the biosphere into
chemical components. These components may be real and measurable such as DNA. RNA. pro-
tein. etc. Alternatively. chemical structure may be imparted with less well-defined components
such as “synthetic component’, “structural component’, or similar terms. A modei may be non-
chemically structured by recognizing that in a pure culture the biosphere consists of cells of differ-
ent cell sizes and ages and the biosynthetic capabilities of a cell depend on age or size. With a
mixed-culture a non-chemically structured model would recognize the existence of different spe-
cies and would consider the interactions among species. Often the term “structured model
implies only chemical structure. In this chapter an effort is made to recognize explicitly the two
possible forms of structure. In a structured model both quality and quantity of the biosphere are
important.

Another distinction arises due to the nature of a microbial culture: it consists of many distinct
cells. A "segregated” or corpuscular’ model is one that explicitly recognizes that a population con-
sists of individuals cach of whom may have distinct properties. A ‘non-segregated” or “distribu-
tive” or “continuum’ model does not explicitly recognize the existence of individuals but rather the
cell mass is viewed as a lumped biomass which interacts as a whole with its environment.

As long as the properties of interest can be adequately represented by averages, the non-segre-
gated approach is satisfactory. However, if properties with moments higher than first-order are
important. then the lack of recognition of the existence of individual cells can be important. For
example. suppose that 10% of the total population is responsible for 90% of the product forma-
tion. Shifts in the distribution of cell types in the population could be important. With the use ot
genetically engineered organisms it will be quite possible for a population to contain a wide var-
icty ot cell types differing in gene dosages (Imanaka and Aiba, 1981). For such cultures some rec-
ognition of segregation in the model will be important.

The mathematical requirements for the non-segregated and segregated models to give identical
resufts have been described (Harder and Roels. 1982: Ramkrishna. 1979). Essentially. the con-
tinuum approach can be derived from the segregated approach if: (1) the rate function of a
sequence of enzymatic reactions. R, can be factorized out of the probabilityv—density function,
and (2) the properties of the cell are statistically independent. Under these conditions it can be
demonstrated that the correct formulation of chemically structured. non-segregated models
requires the use of intrinsic concentrations (e.g. mass of component i per unit mass of total bio-
material) for all biotic components. Abiotic components can be expressed as extrinsic concen-
trations (i.e. component mass per unit of reactor volume). Fredrickson (1976) was the first to
articulate this requirement based on physical considerations.

The simplest type of model is unstructured and non-segregated: the Monod equation is an
example of such a model. Fredrickson and coworkers (1971) have shown that only structured
maodels can possibly predict the response of a microbial culture in unbalanced growth. Thus the
Monod equation can only work under balanced growth conditions. Generally. exponential
growth in batch culture and steady-state growth in a single-stage chemostat are considered the
only common balanced growth situations. Probably neither exactly fuifills Campbell’s definition
of balanced growth. Barford and coworkers (1982) cite examples of exponential growth in batch
culture which are not balanced. For a truly unstructured model to apply to steady-state chemostat
growth. cell composition would have to be the same at all dilution rates: experimental measure-
ments have shown that cell composition varies with dilution rate.

For any transient response structured models must be used. The rest of the chapter will be
devoted to models which contain sufficient structure (chemical and/or non-chemical) to be useful
in predicting the dynamic response of fermentation systems.

6.3 MODELS OF CELLS IN SUBMERGED CULTURE
6.3.1 Chemically Structured Non-segregated Models

Two of the first chemically structured models proposed wcre those by Williams (1967) and by
Ramkrishna et al. (1967). Both were two-component models. Williams (1967) lumped the cell
into a synthetic component (primarily RNA) and a structural-genetic component (primarily
DNA and protein). Ramkrishna et al. (1967) divided the cell into a G-mass (RNA and DNA) and
D-mass (proteins). As pointed out by Fredrickson (1976), both models are invalid since intrinsic
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Such models have proved useful but are clearly limited since the interactions among members of
the population may be essential to maintain the stability of the system.

Another form of structured but non-segregated models is obtained by dividing the total
biomass in a mixed culture into components based on species rather than on compositional
variables such as RNA, DNA| etc. Such an approach makes good sense if each species per-
forms a unique function within the popuiation. It is not necessary that each species com-
ponent be further divided into compositional categories (although such an approach could be
very valuable): the division of the culture into species is sufficient to give the culture
‘structure .

A farge number of models for mixed cultures exist. An excellent overview can be obtained
from articles by Fredrickson (1977, 1983). Kuenen (1983). and Bazin er al. (1983). The classifi-
cation scheme offered by Fredrickson (1983) is given in Figure 1. Such interactions can give
rise to a wide variety of dynamic responses. Even when the manipulated parameters in a che-
mostat (e.g. temperature. feed concentration. flow rate. etc.) are held constant. the system may
exhibit sustained oscillations. Small perturbations in flow rate or substrate levels in the teed
can cause very strong transient responses and possible destabilization of the system. Some
examples of the dynamic behavior that can be encountered in steadv-flow systems are given in
Figure 2.

Mixed cultures are of importance in many natural food fermentations. waste treatment and
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Figure 1 Scheme of classification of binary population interactions. The rales of A and B may be reversed. Top part of
figure is for indirect interactions, while the bottom is for direct interactions. (From Fredrickson. 1983, with the permission
of the American Chemical Society. Washington, DC)
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Figure 2 Stability regions of a model for the predator—prey interactions of Dictyostelium discoideum and Escherichia coli
in continuous culture. The model was based on saturation kinctics. Five types of steady-state behavior can be predicted as
a function of combinations of holding ime and concentration of the limiting nutrient (glucose in this case). The prediction
of sustatned periodic oscillations was confirmed cxperimentally with good correlation between the model predictions and
experimental data. {From Tsuchiva eral.. 1972, with the permission of the American Society for Microbiology)

natural ecosystems. They also represent the case where models of dynamic behavior are essen-
tial. Models of populations in which the behavior of each component species is modelled by a
chemically structured model have not been accomplished. Such a model would have a much
greater potential of truly representing the wide variety of dvnamic responses that can be obtained
with nixed cultures.

6.3.3 Segregated and Chemically Unstructured Models

Models which are termed segregated but chemically unstructured are based on the presump-
tion that a single variable such as cell age or cell size can completely describe the physiological
state of a cell. Thus any cell of say the same size must have the same composition and biosynthetic
capabilities. The population model has ‘structure’ in the sense that the biosynthetic capabilities
and composition of the population can be altered as there is a shift in the controlling variable such
as size. Such models have the potential to predict transient responses.

Ramkrishna (1979) has summarized a number of aspects of formulating segregated models and
reviewed some important aspects of previous studies. however. these models have generally had
less impact on biotechnologists working with bioreactors than structured non-segregated models
have had.

Shu’s (1961) model for product formation is a possible exception. It makes use of an age den-
sity function, and product formation is tied to cell age. It is a versatile model and can reproduce
the transient profiles typical in a wide variety of fermentations. However, it is difficult to evaluate
all the necessary parameters from basic biochemical principles and the model. in practice. has a
high degree of empiricism. Such a model may be useful in bioreactor design but not in mechanism
discrimination.

As Bailey (1980) has pointed out. the development of segregated models with a significant level
of chemical structure has been impeded by the difficulties in obtaining experimental data for
model building and verification. The rapid measurement of DNA, protein and RNA (and poten-
tially others) of a single cell can be accomplished with the appropriate fiuorescent stains and flow
cytometry. The availability of such measurements will undoubtedly act as an impetus to the
development of segregated models which allow cells to contain chemical structure.
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6.3.4 Population Models Based on Single-cell Models—Segregated and Chemically Structured
Models

Models derived from the population point of view. which contain chemical structure as well as
recognize segregation. result in equations which are extremely difficult to solve. Shuler et o/
(1979) described a complex model for the growth of a single cell of E. coli. 1t was suggested that
population models containing chemical structure and recognizing segregation might be con-
structed from a finite-representation technique using each single-cell model to represent some
subtraction of the total population.

Nishimura and Bailey (1980) in an important paper starting from the perspective of a single cell
of E. coli have constructed a model giving analytical solutions for the distributions of cell mass.
DNA content. chromosome configuration and total cell numbers. The model requires that the
growth rate be specified so that it responds implicitly rather than explicitly to changes in nutri-
ents, The model makes very good predictions of the transient response of such a culture to a shift-
up in growth rates. Bailey (1983) has reviewed the use of this general approach to the cukaryotes
Schizosaccharomyces pombe and Saccharonivees cerevisiae as well as bactena.

Shuler and Domach (1983) have reviewed much of the literature concerning the development
of models of single cells. Since the numt 2r of molecules in a single cell is small. the use of the
normal types of kinetic expressions based on concentrations is not strictly allowable. However it
the maodel cell is to be typical of a large number of cells (at least more than 100). then such kinetic
cxpressions are aceeptable. Such an understanding is implicit in almost all of the single-cell
models developed.

Shuter and Domach (1983) and Domach et al. (1984) have described o complex single-cell
model for E. coli (see Figure 3). Almost all of the model parameters were estimated trom data in
the literature. Four parameters associated with cross-wall formation could be evaluated only after
the model was run at one growth rate where glucose was rate-himiting. Although the model 1s
complex. it contains only four parameters adjusted within predetermined limits. Such a model
provides an ideal framework for the quantitative testing of the plausibility of biological mechan-
isms. Shuler and Domach (1983) use the model as a basis for testing mechanisms for the control
of imtiation of chromosome svathesis in E. coli.
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Figure 3  Andealized sketeh of the model E. coli B/t A growing in a glucose-asmmonium salts medium with glucose or
ammonmia as the limiting nutricnt. At the time shown the cell has just completed a round of DNA replication and imtiated
cross-wall formation and a new round of DNA replication. Solid lines indicate the flow of material. while dashed lines
indicate Hlow of information. The symbols are: A,. ammonium ion: A, glucose (and associated compounds in the cell):
W. waste products (CO., H.O and acetate) formed from energy metabolism during aerobic growth: P, amino acids: P..
ribonucleotdes: Pa. deoaxyribonucleotides: Py. cell envelope precursors: M, protein (both cytoplasmic and envelope):
M. (ae. immature “stable” RNA: Mg, ;. mature “stable’ RNA (r-RNA and t-RNA—assume 85% r-RNA throughout):
M.y. messenger RNAD Mo DNAL M, non-protein part of cell envelope (assume 16.7% peptidoglycan. 47.6% lipid and
357" polysaccharide): Ma. glycogen: PG. ppGpp: E,, enzymes in the conversion of P, to Py E;. Es. molecules involved
in directing cross-wall formation and cell envelope synthesis—the approach used in the prototype model was used here
but more recent experimental support is available: GLN, glutamine: E,. glutamine synthetase: * indicates that the
material s present 1n the external eavironment. (From Shuler and Domach, 1983, with the permission of the American
Chemical Society, Washington. DC)

A population model can be constructed from the single-celi model without the addition of any
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adjustable parameters (Domach. 1983: Shuler and Domach. 1983 Domach and Shuler. 1984h).
However. a cause for asynchrony must be specified and included in the model: in this case a ran-
dom vanation in the quantity of enzyme responsible for cross-wull formution was chosen
(Domach and Shuler. 1984a). Domach and Shuler (1984b) have described the use of such a
model for the prediction of the dynamic response of a population of £. coli in a single-stage
chemaostat to a shift in dilution rate. A comparison of experiment to model predictions is given in
Figures 4 and 5. Recalling that no adjustable parameters were utilized in descloping the popula-
tion model. the correlation of prediction with experiment is quite remarkable. Thus it appears
possible to predict the dvnamic response of a large fermenter based solely on basic biochemistry
without recourse to empirical expressions. However. such models, while mathematically straight-
forward. are quite tedious to develop and require substantial computer time.
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Figure 3 Shitt in predicted (@ and observed (—) size distributions due to a flow perturbation in a chewostat Vhe orga-
nism modelied was Eschierichie colt B tA ar 37 °C Predictions were made using the single-cell model depicted m Frgure 3
as a base Tor a population model using a finite representation scheme. 225 model cells were included in the population
scheme: a smoother predicted size distribution would have beea obtained if more maodel colls had heen used. Noncthe-
less. the madel accurately predicts the ime-dependent shift in cell size and gives a reasonable approximation to the
breadth and shew of the size distribution. The initial steady-state distribution is shown 1 (a) just prior to the decrease 1o

flow. The imtial dilution rate of 0.91 h ' was changed 0 0.65 b at time ¢ = 0. (From Domach and Shuler, 1984hy
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Figure 5 Prediction of transient changes in substrate concentration and dimensionless cell number. The model predie-

tion is denoted by a solid line. while the observed values of substrate concentration and dimensionfess cell number are
given by @ and . respectively. The data are for the experiment described in Figure 4. The model is a population model
hased on an ensemble of single-cell models as described in Figure 3

6.3.5 Models with Time Delays

Computationally simple models that predict dynamic behavior are particularly desirable for
process control. Rather than explicitly introducing a complex kinctic network the effects of ccell
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adaptation can be included through the use of time delays. Nominally unstructured models modi-
ticd by inclusion of time delays are potentially promising candidates for making predictions of
dvnamic behavior.

The underlying rationale for such models can be found in the concept of refaxation times
(Harder and Roels, 1982). The concept originated as a means of realistically describing complex
thermodynamic systems. A relaxation time characterizes the rate of adaptation of an internal
process to changes in the external or abiotic conditions. The system. the biotic phase. is then des-
cribed in terms of relaxation times and externally observable vaniables. The smaller the refax
ation time the more quickly the internal mechanism adapts to changes in input.

A typical cell is characterized by a large number of processes with widely varving relaxation
times, e.g. allosteric controls with relaxation times of about 1 s (range 107 to 107 $) 0 evolution-
ary changes with times of 10° s or larger. Not all of these internal processes are usually of import-
ance to the prediction of the behavior of interest. If the rate of change of a variable in the ubiotic
environment is slow compared to the rate of adaptation of an internal mechanism to that change.
then the dynamics of that internal mechanism may be neglected: it will alwavs be at a yuasi
steadyv-state with respect to the external variable. In the above example the relaxation time of the
internal process is much smaller than a characteristic time associated with the external system.
On the other hand. if the relaxation time of the internal process is much larger than the external
relaxation time. then that internal process can generally be ignored from a short-term viewpoint
such as for process control. For example. the ‘normal” dvnamic response of a population in con-
tinuous culture to perturbations in flow are dissipated in two or three residence tmes but such
changes may have long-term effects in the sclection of a subpopulation of celis. Such a selection
might not become apparent for many more cell generations,

Consequently. the dynamic behavior of a system could be satistactonly estimated by oniv con-
sidering those internal processes that have the relaxation times of external changes. These mter-
nal processes with smaller relaxation times can be considered to be in a quast steady-state while
those processes with larger relaxation times can be ignored. For process control where the magor
fluctuations in the abiotic environment can be anticipated. a model recognizing i small number of
relaxation times may be quite adequate.

The application of the use of transfer functions to biological systems is an example of the con-
cept of relaxation times. An important example is the model suggested by Young and Bungay
(1973). With this model they were able to predict the transient response of a chemostat to per-
turbations in flow or substrate feed concentrations; parameters predicted were biomuass, sub-
strate. protein. RNA and cell number. Results that might be expected are given in Figure 6. The
values of the time constants could be estimated from experiments using a “black box™ approach.
The application of such techniques in the field of process control is well known (Coughanowr
and Kopel. 1965). The essential limitations to this approach are: (1) that only predetermined
external variables are changing and at a rate consistent with the experiments to evaluate the
time constants. and (2) the transfer approach assumes a lincarized system. Since biological
systems are highly non-linear. the transfer function will be valid only for refatively small pertur-
bations.

Time delays can also be included in models based on physiological reasons rather than “black-
box™ models. Many such models have been recently reviewed by MacDonald (1982). An carly
example is the discussion of a linear model with discrete delav which was invoked by Finn and
Wilson (1953) in considering observations of sustained oscillations of a veast population in a che-
mostat. Others have also suggested more complicated expressions making use of not only discrete
delays but distributed delays employing a memory function. Such delays may act to approximate
the complicated relationship between cell numbers and biomass in a population, or to include the
ettects of inertial nutrient pools. or to recognize that a cell’s previous physiological histary will
affect its dynamic response to perturbations. Important examples are models as suggested by
Powell (1969) which use a memory function to assess the influence of the history ot the nutrient
concentrations experienced by the population on the population’s ability to respond to pertur-
bations. Harder and Roels (1982) have described the use of Powell's model for predicting the
specific rate of product formation to specific growth rate.

Models with time delay can usefully simulate a variety of responses. The evaluation of para-
meters from ‘black-box" experiments can provide workable models pertinent to the control of
real systems in terms of variables which can be readily measured. While such models are poten-
tially attractive for process control and do have a conceptual justification, they arc limited to situ-
ations where the potential perturbations are known. The accuracy of the predictions depends on
the size of the perturbation of the external variable. Such models are not particularly useful in
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Figure 6 Comparison of predictions from a model derived from a system-analysis perspective., predictions from a Monod
model. and experiment. The experimental system was a chemostat for a glucose-limited culture of Saccharomyces cerevi-
siue operating at a ditution rate of .20 h ', In this particular experiment the system was perturbed with a stepwise
increase in feed glucose concentration from 1.0and 2.0 g1 . x is biomass concentration. g is growth rate and s is substrate
coneentration. (From Young and Bungay. 1973, with the permission of Biotechnol. Bioeng. and Wilev. New York)

discriminating among hypotheses of how cells function or in predicting the performance of a large
variety of bioreactor types employing the given cells.

6.4 MODELS OF CELLS IN SURFACE CULTURES

Although most commercial fermentation processes in the West make use of submerged cul-
tures, surface cultures offer potential advantages (Hesseltine, 1972). In Japan the growth of
molds on solid particles (i.e. the koji process) is important as a source of enzymes and as a first
step in the production of sake. Solid substrate fermentation has been practised successfully on a
large scale. Certain mold products. e.g. mold spores to be used as insecticides (Miller er «f..
1983). require a high level of cellular differentiation and can be best obtained with solid substrate
differentiation.

Such a process would. at least at the microscopic level. be always a dynamic one and presents
some unique modelling challenges. A colony is always changing. and the system is much more
heterogeneous than in submerged culture: spatial considerations cannot be neglected. The dithi-
culties of these challenges coupled with the current low fevel of commercial activity with solid
substrate fermentations has resulted in little real progress in this area. Prosser (1982) has
reviewed a number of the suggested models for mold growth on solid substrates. Most models
examine a specialized aspect of colony growth such as changes in macromolecular composition
during vegetative growth. hyphal tip shape and extension. and growth of individual hyphae.
Models for colony formation on solid media exist and are adequate to predict rate of extension of
colony and branching patterns. Such models fail to address three important points: cellufar differ-
entiation. product formation associated with cellular differentiation, and interaction with nutri-
ents in the solid media.

The rational design of solid substrate fermenters requires dynamic models. Such models would
ideally include explicit recognition of the abiotic environment (gas phase and solid medium) and
consider differentiation and product formation, and the interaction of colonies through the com-
petition for nutrients or excretion of metabolic byproducts. Mathematically, ordinary differential
equations describing mold growth need to be matched to partial differential equations for nutri-
ent (or extracellular byproduct) profiles within the solid media. The macroscopic reactor model
would be constructed from the models at the microscopic level.

6.5 SUMMARY

Transient responses of cell populations invariably result in unbalanced growth. Only models
that contain structure have the inherent capability of accurately modelling population dynamics.
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Structure. in the broadest sense. means that the modeller recognizes that both the quantity and
quality of the cell population determines the dynamic behavior of the population. Models vary
greatly in complexity and degree of empiricism. The objective that the model is to fulfill deter-
mines selection of the model. thus the modeller must be aware of the range of model tvpes and be
able to pick a modelling approach matching the desired goal.
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. plasmid replication and accurately predicts the copy-number of ColE 1 plasmids carrying a vanety
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5 ”/CL’)'(‘\ interactions of regulatory elements involved in the replication apparatus. The model favorably

supports the mechanism proposed by Tomizawa and co-workers concerning the nature of RNA-
RNA interactions and that the Rom protein increases the binding between the two RNA species.
The hypothesis that the interactions of RNA [-1I increases the suscepubility of RNA I to the

action of endonucleases is not a plausible mechanism. < 1986 Academic Press. Inc

The mechanism by which the copy-number
of a plasmid is regulated is of importance to
our understanding and use of cells with re-
combinant DNA. The plasmids containing the
ColE1 ongin of replication form a particularly
important class of plasmids as routine fabo-
ratory tools and as key vectors for industrial
applications. All of these plasmids need Esch-
erichia coli replication enzymes and do not
encode any enzymes needed for their own
replication (e.g., Tomizawa, 1984). From the
practical point of view the key event in normal
copy-number control is the control of initia-
tion of replication. These plasmids control
copy-number with two inhibitors, “RNA |7
and a protein inhibitor.

Our understanding of the process has been
greatly increased by recent in vitro experiments
of Tomizawa and colleagues (Tomizawa,
1984; Tomizawa and Som, 1984). RNA I ap-
pears to inhibit the initiation of plasmid DNA
replication by preventing the processing of a
plasmid transcript (RNA 1I) to form an RNA
primer for the DNA polymerase 1. The pre-
cursor RNA transcript can hybridize with the
template DNA at the ongin. The RNA-DNA

' To whom requests for reprints should be addressed.

! Current Address: Department of Chemical Engineer-
ing, Polytechnic Institute of New York, 333 Jay St
Brookiyn, N.Y.

complex serves as the substrate for RNase H
which cleaves the hybrnidized preprimer RNA
to produce an RNA pnmer. RNA [ binds with
the complete preprimer transcript and pre-
vents the formation of the stable RNA-DNA
complex which is a prerequisite for the for-
mation of the primer RNA. The binding be-
tween RNA I and RNA 11 is a second-order
reaction between the two RNA species, and
the inhibitor protein [referred to as either Rom
(Tomizawa, 1984) or Rop (Cesareni et al.,
1982) protein] apparently increases the rate
constant for binding between the two RNA
species (Tomizawa and Som, 1984). Three
hypotheses have been proposed concerning the
manner in which the Rom protein could in-
teract with RNA [ and RNA I to influence
copy-number (Cesareni ef al., 1984).
Although the insights gained from these
studies are invaluable, they do not allow the
a pron prediction of copy-number for a va-
niety of growth conditions and for various
mutations in RNA | or Il structure. The pur-
pose of this paper is to describe a technique
to allow such a prion predictions as well as to
quantitatively distinguish among potential
hypotheses for subcellular mechanisms such
as potential models of interaction of the Rom
protein with the two RNA species. Further,
the modeling technique described here allows
the confirmatior. of interpretations made from
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in vitro data by incorporating such parameters
in a larger context (i.c., a whole cell) where
the complex nonlinear interactions intrinsic
to a whole cell are explicitly allowed.

A base mathematical model of E. coli B/r
suitable for such a study has been described
(Shuler and Domach, 1983. Domach er af.,
1984; Domach and Shuler, 1984; Ataai and
Shuler, 1985a, 1985b; Shuler, 1985). A model
of a single cell, representative of a subtraction
of a microbial population, can be constructed
with significant detail. The model allows ex-
phicit interaction of the cell with external nu-
tnents. Population models can be constructed
from an ensemble of single-cell models in
which e¢ach singlecell model represents a
subfraction of the total population. The model
1s able to make accurate predictions of both
steady-state and transient changes in cell size,
cell composition, growth rates, the timing of
initiation of chromosome synthesis, and the
length ot the C and D penods as a function of
external concentrations of glucose and am-
monium jons. This explicit interaction with
nutnent concentration allows the direct pre-
diction of the effects of various subcellular
mechanisms on overall system response—a
response that can be easily and quantitatively
measured. The use of mathematical models to
explore host-plasmid interactions has been
pioneered by Lee and Bailey (1984a, 1984b,
1984c¢) for Adv in E. coli. The model of the
host cell they used is less robust than the one
used here and cannot respond explicitly to
nutnent concentrations. Fewer in vitro data
were available to use to evaluate parameters
for control of Adv rephcation than are cur-
rently available for ColE1-type plasmids.

The purpose of this paper is to incorporate
models of potential mechanisms for control
of plasmid replication into the base model for
E. coli based solely on independently mea-
sured parameters.

The Criteria for Initiation of a Round
of Plasmid Replication

The following critenia have to be satisfied
for initiation of replication: (1) RNA poly-

R -3y

,__‘:‘

merase binds to the promoter of the RNA Il
gene and initiates its transcription; (2) The
RNA I transcription extends to the origin of
replication without binding to an RNA [ mol-
ecule; (3) The transcript hybridizes with the
DNA template at the ongin and is processed
1o serve as a pnmer for initiation.

To assess the first criterion, the average
transcniption rate of RNA 1l promoter
(Kigaan) 18 required. If, for example, Ky, , 15
10 molecules/h (calculated from Cesareni er
al., 1982), it implies that on average a new
transcription of RNA 1l 1s initiated every 6
min. To assess the second criterion (i.e.,
whether any of the RNA [ transcript would
reach the origin of replication before it binds
to an RNA [ molecule), we must know the
time required for the RNA polymerase to
reach the ongin. The length of this transcript
1s 553 nucleotides; if the rate of transcription
1s known, this time can be calculated. Al-
though RNA polymerase occupies about 70
nucleotides (Glass, 1982) it was assumed that
transcniption of the RNA I has to proceed
about 100 nucleotides (also note that RNA |
is about 110 nucleotides long) before it can
react with an RNA [ molecule to avoid steric
effects. RNA polymerase travels at a rate of
50-80 nucleotides per second (Molin, 1976:
Pace, 1973). Using an average value of tran-
scription rate equal to 65 nucleotides per sec-
ond, we calculate that the time for RNA poly-
merase to fully transcnibe the RNA Il gene is
approximately 7 s [i.e. {555 — 110y65].

For the third cntendh Tomizawa and ltoh
(1982) have reported that approximately half
of the transcripts that escape the binding with
an RNA I molecule and extend to the ongin
are capable of serving as a primer for initiation
of the plasmid replication.

Description of the Criteria
in Mathematical Terms

Description of the first criterion was given
in the previous section where 1/Kr,,, , is the
average time between two subsequent initia-
tions of transcription from the RNA [l pro-
‘moter and this time can be estimated as 6 min.
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For the second cniterion we must be able to
predict what fraction of RNA II transcripts
initiated would escape binding with RNA lin
the 7 s from the time of initiation of RNA [I
transcription.

Binding of RNA Il with RNA I is a second-
order reaction (Tomizawa, 1984). Thus, the
rate of RNA 11 deactivation due 1o hybrid for-
mation 1s

RNATL
vC

d
(—I;RNAH=—/<3 SRNAH (1)
where k; is the second-order binding constant
and VC is the cytoplasmic volume of the cell.
Rearranging Eq. (1) and noting that RNA |
concentration is almost constant for the time
peniod of At (7 s), then Eq. (1) reduces to

RNA [,y = e ¥ RNAIVC- 2 DNA [0y (2)

where RNA [l_q 1s the number of RNA 11
transcnpts initiated, RNA [, is the number
of unbound RNA II transcripts 7 s after their
nitiation, and RNA 1/VC is the intracellular
RNA 1 concentration. Equation (2) implies
that if at any time during the cell cycle, the
number of plasmids in which RNA [l tran-
sciption is initiated is known, and if the values
of VC and RNA I at that instant are used,
then we can calculate the fraction of RNA 11
molecules which would extend to the ongin
without binding with RNA 1.

For the third cniterion, almost half of the
RNA II transcripts which passes the ongin of
replication without binding with RNA [ will
not hybndize with the DNA template at the
ongin or lead to a replication event (Tomizawa
and Itoh, 1982). The number of plasmids (PL)
after the initiation of transcription of RNA 1
is obtained from the equation

PL,=PL,.,-0.5e” " RNAIWNC-arp pp 1 (3)

The subscripts ¢t — 1| and ¢ indicate the values
of PL before and after the latest round of plas-
mid replication, respectively. For example, if
the value of the term

e~k1"RNAYVC-7

is equal to 0.2 at a time that transcription from
RNA Il promoters has been initiated; and if

there were 20 plasmids at that time, then
RNA Il,-o) would be equal to 20 molecules.
Using Eq. (2) we calculate RNA Il,.5 = 20
X 0.2 = 4. This illustrates that out of 20 RNA
II transcripts initiated, only 4 of them would
extend to the ongin without binding with RNA
I. From Eq. (3) the number of plasmids is ob-
tained. For the example cited above, plasmid
copy-number would equal to 22 (1.e., 20 X 0.5
X 0.2 + 20). We assumed a random mode of
plasmud replication (i.e., any plasmid at any
time has the same probability of serving as a
replication template as have any other plas-
mids).

Other modes of replication are theoretically
possible (Rowand, 1969). However, if we as-
sume that a plasmid can replicate only once
duning the cell cycle, than a model of this form
would predict a copy number of two or less
which is substantially less than observed ex-
penmentally or predicted with random repli-
cation (Ataai, 1986). The *“Master Copy” hy-
pothesis can be easily dismissed since plasmids
of this type can exist in high numbers (Tom-
izawa and Som, 1984) which would require
transciption rates from the RNA II promoter
which are far higher than values measured ex-
penmentally (Cesareni er al., 1982).

Thus, based on the comparison of model
predictions for plasmid copy-number to ex-
peniment, the random mode of replication ap-
pears to be the only workable hypothesis. Ba-
zaral and Helinski (1970) have previously pre-
sented expenimental evidence in support of
random replication for plasmids with ColE|
ongins of replication.

Cell growth continues throughout the cell
cycle. After 6 min another round of transcrip-
tion from the RNA {I promoter is initiated.
The same procedure is repeated until the cell
divides. This step-wise calculation procedure
is more computationally convenient than al-
lowing random binding of RNA polymerase
to the RNA Il promoter. Since the time in-
terval between rounds of initiation of tran-
scription at the RNA |l promoter is small
compared to the length of the division cycle,
this procedure should be a good analogy of the
more realistic mode of random RNA I ini-
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tiation. At division, equal partitioning of plas-
mids is assumed.

We could easily incorporate into our ctll
model any distnibution function for the un-
even partition of the plasmids between the
daughter cells. This has not yet been done to
avoid further computational complexity as-
sociated with building population models
consisting of an ensemble of single-model cells
with different plasmid copy numbers and in
turn with different growth rates. Also, we have
assumed that plasmid DNA replication is
nearly instantaneous. This assumption is based
on the observations that the DNA content of
pBR322 is 4.3 kb. Using an average replication
rate for chromosomal DNA and noting that
the plasmid replication is unidirectional, it can
be calculated that the time it takes to replicate
the plasmid DNA is about 10 s.

Model Formulation

To implement the above criteria we need
to be able to_predict the amounts of RNA |1,
RNA II, etc. that are available. The binding
between RNA I and RNA II can be de-
scribed as

k
RNAT+RNA uEiHybn'd
-2

= 1nactivecomplex. (4)

Since k_; is much smaller than &,, (Tomizawa,
1985) the reaction is essentially irreversible,
then

d RNAI
—RNAT =Ky, .,  PL -k, Ve

dt
X RNA I — k4. ,- RNAT (5)

where Ky, ,andky,,,, are the average tran-
scniption and the degradation rate of RNA 1.
The first term in Eq. (5) is the rate of formation
of RNA . The second term is the rate of deac-
tivation by forming a complex with RNA 11,
and the last term is the rate of degradation.
Similarly,

d RNAI
ZRNAL = K PL— ka1

dt
X RNAIl~ k4., RNAIL (6)

The amount of the Rom protein made in the
cell is calculated from

—Rom

dt

(7

=(B-PL-4.0><10""-—‘—)-’1M|

M3 dt
where M1 s the amount of chromosomally
encoded protein, M3 is the DNA content of
the cell, and 4.0 X 107" {s the mass of a
pBR322 plasmid in grams. In Eq. 7 the rate
of Rom protein synthesis 1s assumed to be
proporuonal to the rate of chromosomally en-
coded protein synthesis, multiplied by the ratio
of the plaismid DNA to the chromosomal
DNA. This equation presumes that the level
of RNA polymerase is not rate limiting. The
proportionality constant for the Rom pro-
moter strength, 3, 1s obtained from the intra-
cellular concentration of the Rom protein in
E. coli cells carrying inc1 2rom ™, and inc9rom”~
mutant plasmids (Tomizawa and Som, 1984).

The enhancement 1n the binding constant
between the two RNA species caused by Rom
protein (a), is obtained from

Rom/VC

= W 8
7 Rom/VC + Kpom (8)

where a’ and Krom denote the maximum en-
hancement in the binding constant in the
presence of excess Rom protein, and the sat-
uration constant for Rom, respectively. Then,
ky = ki - (1 + a) where k; and k5 represent the
binding constant between the RNA species in
the presence and absence of excess Rom pro-
tein. The values of the model parameters are
given in Table 1. The evaluation and justifi-
cation of these values follows.

Evaluations of the Model Parameters

The degradation rates for RNA I and RNA
Il are assumed to be the same as that for a
typical mRNA. The second-order rate con-
stants for binding of RNA [ to RNA 1l
(k,, k3) are those reported by Tomizawa (1984)
and Tomizawa and Som (1984) which were
obtained from in vitro experiments. Their

28804 7.3373% apump o6 d
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TABLE 1

PARAMETER VALUES FOR MODEL
Of ColE! REPLICATION

Parameter Value
Kdumar 2187
Krena 63 T.anscripts/h promoter
ke sce Table 2
LS 2th!
LN 10 Transcripts/h promoter
Ao IR0 ™M
! 0.5
8 0.024

measurements were made at 25°C and our
simutation is for 37°C. We used a general rule
(Qy) for the Arrhenius temperature depen-
dence of binding constants, which effectively
results in doubling of the binding rate from
2510 37°C. Kgom Was calculated from the plot
of enhancement in binding rate of RNA I-
RNA 1l versus Rom protein concentration
(Tomizawa and Som, 1984). The average
transcniption rate for RNA [ and RNA I pro-
moters were estimated using the data reported
by Cesareni et al. (1984) where they fused the
B-galactosidase structural gene to the promoter
of RNA [and RNA H genes. These genes were
carried by phages and were integrated into the
chromosome at a ratio of one-to-one. The ac-
tivity of 8-galactosidase expressed from RNA
I and RNA Il promoters was 450, and 65 units
as defined by Miller (1972). These units of ac-
tivity can be correlated to the corresponding
values of the number of S-galactosidase mol-
ccules/cell from which the average transciption
rate of these promoters has been estimated.
The calculated values of Ki,,,,and K1, ,
were 63 and 10 transcripts/h-promoter, re-
spectively.

Plasmid-Host Interactions

The host is the glucose-limited aerobic single
cell model of E. coli B/r (Domach et al., 1984).
The plasmid contains a ColEl origin of rep-
lication. The host biosynthesis machinery is
used to transcribe and translate the genes of

g 738,41 ¢

-

the plasmids. The amount of energy consumed
for transcription and translation of the plasmid
genes is estimated to be the same per bond as
for transcription and translation from the
chromosome.

The rate equations for the change in amount
of precursors (amino acids, rnbonucleotides,
deoxynbonucleotides) 1n the host cell model
are corrected 1o include the amount of these
precursors used tor formanon of the plasmid
DNA. A separate cquation describes the
amount of proteins svnthesized from the plas-
mid genes. The rate of formation of plasmid
encoded proteins 15 assumed to be propor-
tional to the rate of chromosomal protein syn-
thesis based on the ratio of plasmid to chro-
mosomal DNA. The rate equation for mRNA
formed is modified to include the amount of
mRNA formed for synthesis of the plasmid
proteins. All of these interactions which occur
between the host cell and the plasimids do not
affect substantially the host biosysnthesis ma-
chinery or growth rate of cells carrying low
copy-number plasmids. These interactions
become important when considering recom-
binant plasmids carrying st-ong promoters or
for simulation of high copy-number plasmid
mutants. Proteins made in large amounts
would cause significant competition for en-
zymes involved in transcription, translation,
and replication and for precursors and energy.
The required changes in the computer pro-
gram are detailed by Atazi (1986).

RESULTS AND DISCUSSIONS

Model predictions of the copy-number of
cells carrying different plasmids with a ColE|
origin of replication are compared in Table 2
to the reported cxpcn';nemal values (Tomi-
zawa and Som, l984}_;;\10dcl predictions com-
pare well with the >xperiment. Particularly
important is the model prediction of decrease
in the copy-number as a resuit of enhancement
of the binding constant due to the Rom pro-
tein. It should be noted that the simulation is
for-cells growing in glucosc-minimal salt media
at the maximum growth rate (i.e., 4 = 0.94
h~"), and the experimental resuits (Tomizawa
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TABLE 2

COMPARISON OF MODEL PREDICTIONS TO EXPERIMENT“ FOR VARIOUS COPY-NUMBER MUTANTS

ky J; Model predictions Experiment
RNA’s tbinding constant
(ml) x 10" Copy- Copy-

Strain molecule —h Rom number Decreases number Decreases
pN204 88 - 23 2.3 30 30
pNT205 173 + 10 10
pN212 17 - 125 6.2 200 6.7
pNT214 96 + 20 30
pNTS2 29 - 60 29 60
pNT3t8 92 21 20 3
pNTT3 42 -~ 43 1.6 40 20
pNT319® 66 + 28 20
pNTS9 35 ~ 54 22 50 2.5
pNT317 78 + 25 20

* Tomizawa and Som (1984).

® Mislabeied in original paper as pNT318 (J. Tomizawa, personal communication).

and Som, 1984) are for growth in LB medium
at 32°C. Although these two growth situations
are quite distinct, the overall growth rate is
similar (ca. ¢ = 1 h™"). Also, both our exper-
imental results and the model predictions 1n-

Prosmid copy-number

X
Tamas

FiG. 1. Effect of variation of RNA | and RNA 11 pro-
moters strength on plasmid copy-number. The binding
constant between the two RNAs is 84:10" (cc/molecule-
h). The degradation rate of RNA fandMlis 21 h™*. Lines
1, 2, 3. and 4 correspond to K7, , cqual 10 45, 90, 180,
and 360 transcripts/h-promoter, respectively. The area
between the dashed lines correspond to the experimental
value of plasmid copy-number where £20% error in the

reported value is assumed.

dicate oanly slight vanation in copy-number
with growth rate for growth rates in the range
of 0.3 to 1.0 h™'. The model simulations as-
sume that the transcription rates for RNA II
and RNA I are not dependent on growth rate.

Changes in transcription rate of RNA [ and
RNA II with growth rate could lead to stronger
vanation of copy-number with growth rate. In
Fig. | we display the predicted copy-number
as function of the ratio of transcription rates
for RNA I to RNA L. A family of curves is
generated as a function of RNA [ promoter
strength. Runaway replication occurs  if
Krpa Tenan- Thus differential changes in
Kyenad0d K, , with growth rate could
change copy-number significantly and even if
the ratio of K, / Kt1pua o 15 maintained at 6.3
a decrease in overall transcription rate with a
decrease in growth rate could lead to an in-
crease in copy-nuniber. Other factors have
been tested for the sensitivity of the model pa-
rameters. Slight variations in assumptions
about the frequency of initiation from the
RNA-DNA complex do not ffect copy-num-
ber predictions greatly (22 copies for /= 0.4
and 28 for f = 0.6 while the value of 0.5 used
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. B

I



1n Eq. (3) results in a copy-number of 23). If
we assume that changes in RNA structure alter
suscepubility to degradation by nucleases, then
fairly significant changes in copy-number will
be predicted (e.g., about 10 at kg4,
=105h"',23at2t h"',and 85at42 h™').

The simulation results in Fig. 1 pre side in-
formation on the ratio of RNA I and RNA [I
transcription rates (>1 10 prevent runaway
rephcation and > about 2 to muiminize fluc-
tuations 1n plasmid number 1n cell popula-
tions). Even with no pnor expenmental mea-
surements one can use modeling techniques
to place bounds on expenmental results. Fur-
ther, the simulation results provide a basis to
predict how plasmid copy-number might be
affected if either RNA T or RNA [l transcnp-
tion rates were altered by mutation or if pro-
moters for these two transcripts were replaced
by promoters of altered strength.

Since the details of molecular events in-
volved 1n the control of replication are incor-
porated into the formulation of the initiation
cntena, and all the model parameters are ob-
tained independently, we believe this model
can be used to test hypotheses about the in-
teractions of regulatory elements involved in
the replication control. As is evident from Ta-
ble 2, the model is consistent with the finding
of Tomizawa and Som (1984) that the Rom
protein increases the binding constant between
the two RNA species.

Cesarent et al. (1984) proposed three hy-
potheses concerning the ways in which Rom
protein could interact with the two RNA spe-
cies and control copy-number: (1) The inter-
action changes the secondary structure of
RNA I such that it cannot bind to the DNA
template at the ongin. {(2) The interactions
cause premature termination of RNA I tran-
scnipts and that a potential site for termination
exists at a position 220 nucleotides down-
stream of the promoter of RNA 1l gene and
20% of transcripts terminate at that point. or
(3) Interactions between the RNA's species
increase the suscepubility of RNA Il to the
nbonucleases. The first hypothesis serves as
the basis for the model, and the results (Table
2) support the plausibility of this hypothesis.

9o 733, A, +2e

However, for the second hypothesis, the model
was used to calculate the fraction of RNA 11
transcripts of the wild-type plasmid with rom™
mutations which wouid bind with RNA [ at
position 220 downstream from the initiation
point of RNA Il transcripts. It was found that
28% of the precursors imtiated would have re-
acted with RNA 1. This result is ciose to the
20% value observed by Lacatena er al (1984).
Thus, either hypothesis 1 or 2 1s in quantitative
agreement wath the expenmental observations.
However, the model suggests that for the sec-
ond hvpothesis to be plausible a potential ter-
minauon site must exist at a position 365 or
further downstream from the initiation of
RNA I transcnpuon. If the termination site
at 220 bp found (Lacatena et al., 1984) is the
only site, then it 1s highly uniikely that the
second hypothesis 1s correct. This concept 1s
deduced from the simulation results presented
in Table 3: if the last termination site betore
the ongin is at the position 363 bp or upstream
of that value, the predicted plasmid copy-
number would be too high to be plausible.
Similar dependence of copy-number on the
position of termination is predicted if the rom
gene is active.

To investigate the plausibility of the third
hypothesis, Eq. (3) was replaced with the
equation

PL/: PL, , + 0.5-¢ fRNAINC- A
XPL, , +0.5-hybnd-PL,., (9

TABLE 3
Prassip Cory NUMBER VS THE POSITION OF
HYPOTHETICAL STRONG TERMINATORS
of RNA 1-11 CompPLEX

Position of terminator site from the
point of intation of ENA 11 Plasmid,
transcription Copy-number?

545 23
495 3
430 38
365 50
300 65
220 90

* The plasmid copy-number measured expenmentally
is 30.
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where the hybrid denotes RNA [-RNA I
complex. The last term represents the fraction
of hybrid which is not degraded by endonu-
cleases. Equation (9) assumes that either free
RNA II or the undegraded RNA II compiex
can hybndize with the onigin and form primer.

The portion of undegraded hybnd is ob-
tained by writing a matenal balance for the

hybnd:
1 . RNAI
£ hybrid = k, - -RNAHI
dt
~ Ky o hybrid. (10)
Since RNA 11 = | — hybnd. rearrangement
of Eq. (4) results in
- ( ’ -~
NG A e
- —k;-RNAL/
s VC((,—A:(IQ-RNA ch+kd —l)]
o i = hybnd
T T k-RNAUVC + kg,
) 7 S - ey

In Eq. (1) if k4, ,— co, then hybrid — 0,
which meansail the hybnd formed is degraded
instantaneously, then Eq. (9) reduces to Eq.
(3), and as a result the model prediction would
be in accord with the experiment (see Table
2). However, if k4, ,— 0, Eq. (9) reduces to

PL,=PL,_,+0.5-PL_,=15-PL.,. (12)

Using Eq. (12) instead of Eq. (3) in our sim-
ulation, no steady-state plasmid copy-number
is achieved, and the copy-number approaches
infimty. Thus, if an intermediate value of
Ko, vq 15 Used, a reasonable prediction of copy-
number could be made. Those intermediate
values were obtained by using Eq. (11) instead
of Eq. (3) in the simulation. If the value of k,
used is for plasmid with wild-type RNAs and
either with or without a mutation in the rom
gene, the corresponding value of k4, ., has to
be larger than 8000 h™'. This value of the deg-
radation rate for RNA Il or the RNA [-II
complex is unrealistically high (i.c., half-life of
0.3 s). As a result we believe this hypothesis is
not a plausible one.

The ability of this model to test the plau-
sibility of the biochemical mechanisms in-
volved in the regulation of the initiation of

Mgoy .39, Y0
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plasmid replication, as well as suggesting the
conditions under which a hypothesis is plau-
sible, clearly demonstrates the need for con-
structing mathematical models which are
based on the sequence of molecular events
which are thought to take place. It should be
noted that this type of model is also essential
in investigating the problem of genetic stability
and finding the optimum bioreactor configu-
ration for maximum production of proteins
coded by plasmds.

ACKNOWLEDGMENT

This work was supported 1n part by ONR Grant
NO0O14-85-K0580. Portiopns of fhis
conduct e ¢n tho '/I"Ld}f AR
pad'y/ s —~ £ 5 =
aclify pererences T T €
C("ol Sl Mutaiton
ATAAlL M. M_(1986) “Mathematical Modetls for Growth

of Single Cell and Population of Eschenchia coli under

" Anaerobic Conditions and Development of a Mecha-
mistic Model for Replication of ColE: 1 Plasmids.” Ph.D.
thesis, Cornell University, fthaca, N Y.

ATAAL M. M. AND SHuLtr, M. L. (198523). Stmulation
of the growth pattern of a singlecell of Escherichia coli
under anaerobic conditions. Bunechnol Bioeng 27,
1051-1055.

ATAAl, M. M., AND SHULER, M. L. (1985b). Simulauon
of CFSTR through development of a mathematicai
model for anaerobic growth of Escherichia colt cell
populauon. Biote. 1inol Bioeng 27, 1051-10588

BAZARAL, M., aND HELINSKI, D). R (1970). Replication
of a bactenal plasmid and an episome in Eschericiua
colt. Biochemistry 9, 399-406

CESARENI, G., CORNELISSEN, M. LACATENA, R. M_, AND
CastagNou, L. (1984). Conurol of pMBI replicatton:
[nhibition of primer formation by Rop requires RNA
[. EMBO J. 3, 1365-1369.

CESARENI, G., MUESSING, M A_, AND POLISKY, P. (1982}
Control of ColE1 DNA replication: The rop gene prod-
uct negatively affects trarscnpuon from the replication
primer promoter. Proc. Nail Acad Sct USAT9,6313-
6317.

DomacH, M. M. LEUNG. S. K., CauN, R. E., Cocks,
G. G., AND SHULER, M. L. (1984). Computer model
for glucose-limited growth of a single cetl of Eschenchia
coli B/r A. Biotechnol. Bioeng. 26, 203-216.

DoOmMacCH, M. M., AND SHULER, M. L. (1984). A finite
representation model for an asynchronous culture of £
coli. Biotechnol. Bioeng. 26, 877-384.

Iin Screvee Onr
,
UJL"C“' [

r(’f(’@/fl

~ -

re_ e ey,

-
7

—

Eo e

e ';,ar S b

fe £

l - 3
Teerev o/ Tleo

7 Er?:,-(:‘r;, =

7

/\/_SF/ New, Yoy P

Cho s

!

Q - o
L@7 Cor

‘7



gas
ééu AN
(//}(;L} ,—)C}

[ﬁc’{f,

GLAsS, R. E. (1982). “Gene Function.”™ Univ. of California
Press, Berkeley/Los Angeles.

LACATENA, R. M., BANNER, D. W_ CASTAGNOLL, L., AND
CesarReNt, G. (1984). Control of initiation of pMBI
replication: Purified rop protein and RNA 1 affect primer
formaton 1n vitro. Celfl 37, 1009-1014.

LEE. S. B., AND BaILEY, J. E. {1984a). A mathematical
model for Adv plasmid replication: Analysis of a wild-
type plasmid. Plasrmud 11, 151-165.

Lif, S B. aAND BatLey, J. E. (1984b). A mathemaucal
model for Adv plasmid replication: Analysis of copy-
number mutants. Plasmid 11, 166800 /77 7

LtE, S B. AND BAILEY, J. E. (1984¢). Analysi: of growth
rate etfects on productivity of recombinant Eschenchia
coli populations using molecular mechanism models.
Biotechnol Bioeng. 26, 66-73.

MitLER, J. HL(1972). "Expenments in Molecular Genet-
1cs.” Cold Spring Harbor Laboratory, Coid Spring Har-
bor. N.Y.

MoOUIN, S. (1976). Ribosomal RNA chain elongaton rates
in Eschenchia coli. /n “Control of Ribosome Synthesis™
(0. Maaloe, ed.), Alfred Benzon Symp. 9. pp. 333-339.
Academic Press, Orlando, Fla./Copenhagen.

Pace, N. R. (1973). Structure and synthesis of nbosomal
nbonucleic acid of prokaryotes. Bacteriol. Rev. 37, 562~
603

ROWAND, R. (1969). Replication of a bactenal episome
under relaxed control. J. Mol. Biol.. 44, 387-402.

SHULER, M. L. (1985). On the use of chemically structured
models for bioreactors. Chem. Eng. Commun. 36, 161 -
189.

SHULER, M. L. AND DOMACH, M. M. (1983). Mathe-
matical models of the growth of individual cells. Tools
for testing biochemical mechanisms. /n “Foundations
of Biochemical Engineening: Kinetics and Thermody-
namics in Biological Systems™ (H. W. Blanch, E. P. Pa-
poutsakis, and G. Stephanapoulos, eds.), pp. 93-133,
ACS Symp. Series 207, Amer. Chem. Soc., Washington.
D.C

ToMmizawa, J. (1984). Controt of ColEl plasmid reph-
cation: The process of binding of RNA [ to the pnmer
transcript. Cell 38, 861-870.

ToMizawa, J. (1985). Control of ColEl plasmid reph-
cation: Initial interaction of RNA I and the pnmer tran-
script is reversible. Cell 40, 527-535.

ToMizawa, J., aND ITOH, T. (1982). The imponance of
RNA secondary structure in ColEl primer formaton.
Cell, 31, 575-583.

ToMizawa, J., anD Som. T. (1984). Control of ColE!
plasmid replication: Enhancement of binding of RNA
1 to the pnmer transcnipt by the Rom protein. Cell 38,
871-878.

ABCROY 7.40

__i‘__“—ﬂ;n;“

PRSI 6E] 9




A MATHEMATICAL MODEL FOR PREDICTION OF PLASMID COPY
NUMBER AND GENETIC STABILITY IN Escherichia coli
by

M.M. Ataar*
and
M.L. Shuler?t

School of Chemical Engineering
Cornell University
Ithaca, New York 14853

*Current Address. Department of Chemical Engineering,

PolytechnicInstitute of New York, 333 Jay Street,
Brooklyn, New York 11201

tCorresponding Author




ABSTRACT

The design of bioreactors for genetically modified bacterial cultures
would benefit from predictive models. Of particular importance is the
interaction of the external environment, cell physiology, and control of
plasmid copy-number. We have recently developed a model based on the
motecular mechanisms for control of replication of ColEl type plasmids.

The inclusion of the plasmid model into a single-cell E coli model allows the
explicit prediction of the interaction of cell physiology and plasmid-
encoded functions. The model predictions of the copy number of plasmids
with the ColEl origin of replication carrying a variety of regulatory muta-
tions is very close to that observed experimentally.

A1l of the model parameters for plasmid replication control can be
cbtained independently and no adjustable parameters are needed for the
plasmid model. In this paper we discuss the model's use in predicting the
effect of operating conditions on production of a protein from a plasmid
encoded gene and the stability of the recombinant cells in a continuous

culture,




INTRODUCTION

The ability to manipulate DNA invitro and then reintroduce the modified
ONA into new hosts has greatly expanded the potential role of biological
processing. The preferred organism for genetic manipulation is Escherichia coli
due principally to the wealth of basic knowledge on E.coli genetics and
physiology. Technigues to introduce new genes into E. coli using plasmid
vectors and transformation are now routine [1].

Plasmid shedding is a potential hurdle to large-scale processes with
recombinant organisms. Several experimental studies have documented
plasmid instability [2-6]. Theoretical studies [7,8] have shown that even
for batch fermentation on a large-scale those cells losing the plasmid can
outgrow the plasmid containing cells leading to a non-productive culture.

Intuitively one might expect that the "metabolic burden" placed on a
cell containing a plasmid would reduce a cell's growth rate, particularly
in an energy-limited environment when a high-copy-number plasmid is present
and plasmid-encoded genes are actively being transcribing. Such intuitive
guesses seem to be born out by most experiments [3,5-6]. However, the
problem of "metabolic burden" is coupled to problems of plasmid
partitioning and stability (e.g. the par locus - 9-13).

One important question is whether this "metabolic burden" is
sufficient to predict the growth advantage of revertants over plasmid-
containing cells.

The above question is susceptible to analysis u.ing mathematical
models. That a need for such models exists and that such models can be
formulated is particularly evident in the pioneering papers of Lee & Bailey
[14-16] where a model incorporating a mechanism for the control of Adv

replication has been formulated.
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However, that model is limited by the simplifying assumptions involved
in the interaction of the kinetic expressions for ptasmid replication and
gene expression with host cell functions. The host cell functions do not
respond explicitly to changes in the external environment such as concen-
tration of a limiting-nutrient. Thus the model is restricted to the range
of growth rates used to establish the empirical expressions and would
tikely fail under transient growth conditions where substrate concentra-
tions and growth rate become decoupled. Another potential weakness is that
this model assumes that the host cell functions are not altered by inter-
actions with the replication of plasmids and expression of r-protein
synthesis.

We have developed detailed nodels of £ coli B/r-A [17-21] which could
serve as a basis to predict explicitly the effects of plasmid insertion on
cell physiology and the interaction of the external environment with the
plasmid-containing cell. We have recently extended the single-cell model
to include a mechanism of plasmid replication for plasmids using the ColEl
origin of replication [22]. The plasmid pBR322 and its variations use this
origin of replication and have proved to be particularly useful vectors in
practical systems. Such plasmids use E coli enzymes for replication. Recent
articles summarize the details of replication (see 23-33). From the
modeling point of view the critical event is the control of initiation of
replication. The plasmids contro! copy-number with two inhibitors: "RNA
I" and a small plasmid encoded protein. RNA I acts directly as an
inhibitor. A second RNA species, RNA I, is transcribed 550 base pairs up-
stream of the origin of replication towards the origin and ultimately

serves as a primer to initiate plasmid synthesis.
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The process is thought to occur as follows: some of the RNA [I
hybridizes with the template DNA at the origin; the RNA-DNA complex then

can serve as the substrate for RNase H, which is thought to cleave the RNA-

DNA complex to produce the RNA primer [29]. Under normal conditions the
formation of the primer is the rate-controlling step in plasmid replica-
tion. RNA [ interacts with RNA II during its transcription and prevents
the formation of the stable RNA-DNA hybrid which is a prerequisite for the
formation of an RNA primer [28,34].

The binding between RNA [ and RNA Il is a second order reaction. A
protein inhibitor has been isolated {35-36]. It now appears that the
inhibitor protein (Rom protein) increases the rate constant for binding
between the two RNA species [30-31].

Equations which are used to simulate plasmid replication are detailed
elsewhere [22] and are summarized in Table 1. The criteria for initiation
are summarized in mathematical form in Table 2. The values of the para-
meters used are given in Table 3 and are justified in reference 22. All of
] the modei parameters were obtained independently (principally from invitro
experiments) and were used without adjustment. Definitions of these para-
meters are provided in the nomenclature section.

The purpose of this paper is to explore how cellular dynamics are
altered when this plasmid model is inserted into the framework of a highly
structured £ coli cell model alters cellular dynamics. [n particular we
wish to predict the effects of a plasmid induced "metabolic burden" on
cellular growth rates, genetic stability in a glucose-limited chemostat,

and productivity for production of plasmid-encoded proteins.




MATERIALS AND METHODS
A. Simulation

The host is the glucose-limited aerobic single-cell model of E. coli B/r.
The plasmid is pBR322. The host biosynthetic machinery is used to
transcribe and translate the genes of plasmids. The amount of energy
consumed for transcription and translation of the plasmid genes is assumed
to be similar to that for transcription and translation from the chromo-
some.

The rate equations for the precursors (amino acids, ribonucleotides,
deoxyribonucleotides) in the host cell-model are corrected to include the
amount of these precursors used for formation of the plasmid DNA or plasmid
encoded products. The equations for the base model are given elsewhere
[17-18]. The Appendix lists only those equations modified from the base
model to account for host-plasmid interactions and a separate equation
which describes the amount of proteins synthesized by the plasmid genes.
The proteins encoded by the plasmid genes, as a first estimate, are assumed
to be transcribed at a rate proportional to the rate of protein synthesized
from chromosomal DNA. The rate equation for mRNA formed is modified to
include the amount of mRNA formed in synthesis of the plasmid proteins. A
Runge-Kutta predictor-corrector method is used to solve the set of non-

Tinear ordinary differential equations.

8. Experimental

To test the model predictions a series of continuous culture experi-
ments using a transformant of £ coli B/r containing either plasmid pBR322 or
pl7 were performed. Since plasmids pBR322 and pl7 both are derivatives of

ColEl plasmids, use of pl7 and pBR322 transformants of £ coli B/r allows

————



direct comparison between the model predictions and experiments concerning

the effect of growth rate on piasmid stability and content.

Host: £ colr B/r (ATCC 12407)
Plasmids:

The plasmid pl7 is a derivative of pBR322 modified by placement of tac
promoter [37] upstream of the normal B-lactamase gene. The tac promoter of
pl7 appears to contain a mutation of the original tac promoter. The tac
promoter is a fusion of the lac and trp promoters and can be induced by
[PTG [37] which leads to the overproduction of B-lactamase. The plasmid
pl7 was a gift from Professor D.B. Wilson (Cornell University). Since the
frequency of direct transformation into wild type B-strains of £ coli is very
low, the plasmids were first transformed into E coli WAB37 which is
restriction” and methylase®. The plasmid isolated from this strain was
used to transform £ colr B/r using the standard method described by Maniatis,
etal. [1]. Since isolated plasmids from WA837 are methylated in the same
manner as £ colr methylates its chromosome, these plasmids are protected from
E coli B restriction endonucleases. The fraction of plasmid-containing cells
{stability) was determined by counting the colonies formed in plates with
and without ampicilin. The ampicilin concentration of the plates was 40
ug/ml. Each measurement is the average count of 3 to 5 plates using 50-100
pul of sample (3 plates with 100 ul, 1 with 75 and 1 with 50 ul). The

plates with too few ((20), or too many () 300), colonies were not counted.




Medium:

The medium was: 0.03 g, CaCl,; 0.0l g, MnS04; 3 g, KpHPO,; 1.5 g,
KH,PO,; 1.25 g, (NHy),SO,; 0.10 g, MgS0,°7H205 10 mg, NaCl; 1.0 mg,
FeSO,-7H20; 37.2 mg, Na,EDTA, 7H,0; and 1.0 g glucose in one liter of

distilled water. pH was 6.9 * O.1. All chemicals were reagent grade.

B-lactamase assay:

\ssays of B-lactamase activity were performed in 50 mM phosphate
buffer at pil 7 by using penicilin G (Sigma, St. Louis, MO) as substrate
and monitoring the rate of decrease in the absorbance at 240 nm [37].

A unit of activity was defined as 1 u mole of penicilin G consumed per

minute at 25°C.

Continuous culture:

The Bioflo model C-30 (New Brunswick Sci. Co., New Brunswick, NJ)
with a working volume of 330 ml was used as a chemostat. The culture
medium was introduced through an inlet on top of the vessel. The spent
medium with cells was removed through a vented graduated cylinder
equipped with a valve, and then to an overflow jar. The flow rate was
determined by measuring the time required for the graduated cylinder to
be filled with 200 ml of medium. The temperature of the chemostat was

maintained at 37°C (% 0.5)

RESULTS AND DISCUSSION
The ability of the model to predict copy-number in £ coli cells carrying
different ColEl regulatory mutant plasmids have been compared previously to

the experimental values reported by Tomizawa and Som [30] (see reference




[22]). Comparison of model predictions with the experimental values showed
an excellent agreement. For example, the model predicts a copy number of
23 with wild-type plasmids when the gene for the production of the Rom
protein has been inactivated and 10 in the presence of the Rom protein.

The reported experimental values were 30 and 10 respectively. The binding
constants were measured at 25°C (31l]; our simulation results are for cells
growing at 37°C. We assumed an Arrhenius temperature dependence of rate
constants which effectively results in a doubling of the binding rate from
25°C to 37°C. Since the details of molecular events involved in control of
replication were incorporated into the formulation of the replication
mechanism and initiation criteria, and that ail the model parameters were
obtained independently, the model can be used to test hypotheses about the
interactions of reqgulatory elements involved in the replication control
[22].

In Table 4 the dependence of plasmid DNA content on growth rate is
shown. As is evident from the simulation results of Table 4, the plasmid
ONA content per gram dry weight of cell increases as the growth rate
decreases. The increase is due primarily to a decrease in average cell
size rather than a change in copy-number. The plasmid copy-number varia-
tion over a wide range of growth rate was not significant. The increase in
plasmid DNA content with a decrease in growth rate is in agreement with the
experimental observation of Siegel and Ryu for the plasmid pPLC-23-trp Al
[39]. However, they also reported a significant variation of plasmid copy-
number with growth rate. In another report experimental measurements of
pLpll plasmid copy-number have shown a plasmid copy-number that is nearly

independent of the dilution rate and consequently growth rate [40].

[ —
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Our measurements of B-lactamase activity (a plasmid coded protein) of
E. coli B/r/pBR322 host-vector system over a significant range of growth rates
are shown in Figure 1. It has been shown that g-lactamase activity and
plasmid copy-number are linearly related for plasmids of this type at low
to moderate copy number [41]. Thus copy number appears to be independent
of the dilution rate for this culture for dilution rates of 0.18 h™! to
0.7 h-1. The model prediction of fairly constant copy-number is based on
the assumption that transcription rates of RNA [ and RNA Il are constant.
[f transcription rates of RNA [ and RNA II vary with growth rate, then copy
number will change significantly at Tow growth rates. However, for either
assumption copy-number is nearly constant for dilution rates greater than
0.3 h-L. Copy number would also change significantly if the ratio of RNA I[
to RNA II varied [22]. At very low growth rates copy number might well
increase.

The productivity of plasmid encoded protein synthesis can be predicted
using the model. Since copy-number is relatively independent of growth, we
find that the assumption that plasmid-encoded protein synthesis is a
constant fraction of total protein synthesis results in optimal operation
at nearly the same operating ccnditions as those that maximize biomass
productivity (see Table 5). Under such circumstances the optimization
problem is simple, and the plasmid protein product can be treated as a
primary product as long as the plasmid is stably maintained in the culture.
Such dependence of productivity on growth rate has been reported [40,42}.

However, a more interesting case is obtained if the plasmid gene is
transcribed at a fixed rate ("constitutively") independent of growth rate.
Table 6 details the results of such a calculation assuming a transcription

rate of 50 transcripts/h-promoter for the plasmid encoded gene. Under such




circumstances the optimal operation conditions are at intermediate dilution
rates and product formation can no longer be treated as simply growth
associated. The optimum operating conditions depend on promoter strength
which can be treated as an independent variable as well as on the para-
meters (length of cell cycle, cell size, and cell yield) dependent on
growth rate. As long as the competition for RNA polymerase or for
precursors is not too severe, the assumption of a relatively constant
transcription rate from a sirong promoter is quite reasonable. However, if
we wish to consider effects of even Tower growth rates (¢ 0.25 hr‘l) on
plasmid encoded protein production, then the possibility of increasing copy
number and its effect on protein productivity would need to be considered.

[n this productivity calculation we assumed that all of the cells
retain their plasmids (i.e. 100% stability). However, cellis may lose their
plasmids, either through uneven partitioning or physical instability. To
find the optimum operational conditions for the maximum productivity of
plasmid encoded proteins, the stability of the culture has to be con-
sidered. In Table 7 the plasmid stability in a continuous culture of £ col
containing the plasmid pBR322rom~ (copy-number ca. 23 is shown). It is
assumed that the plasmid gene is fused to different efficient promoters
which resuilt in high levels of plasmid-encoded protein. The fraction of
the population with the plasmid after m generations was calculated from an
equation derived by Seo and Bailey [43}:

001 —n) l 2¢ I (6)
. -
(1-8X2—-1) 2-0

(t‘nﬂ( m) =

where n=(2-8)1/a, o is the ratio of single-cell growth rate of the plasmid

free cells to that of the plasmid-containing cell, and 6 is the probability
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of the plasmid loss. The value of a was calculated directly from the
growth rate of the single-cell model with and without plasmids. Note that
the use of single-cell models allows direct calculation of a rather than
the indirect method that Seo and Bailey [43]) were forced to adopt. 6 was
calculated from the equation: 6 = 21‘n where n is the plasmid copy-number
[40]. The simulation results of Table 7 show that the cells at a higher
growth rate (0.94 h“l) are slightly more stable than those at a lower
growth rate (0.39 h'l). In these calculations it is assumed that the
plasmid instability is only due to uneven partitioning of the plasmids at
birth.

Figures 2 and 3 show the experimental results and model prediction of
plasmid stability of £ coli/B/r/pl7 host-vector system in continuous culture
at two different dilution rates (0.7 and 0.27 h‘l). These cells have the
rom gene and copy-number is reduced; consequently the predicted stability
is reduced from that predicted in Table 7 for cells which are rom - The
experimental results are for two identical chemostats which were inoculated
with the £ coli/B/r/pl7 grown in batch in a shake flask. To increase
stability during batch growth 70 ug/ml ampiciilin was added to both
chemostats at the time of inoculation.

Comparing the experimental results in Figures 2 and 3 indicates that
the culture is slightly more stable at the higher growth rate (O.7h'1),
which is in accord with the model prediction. Equation (6) was used in the
stability calculation. Use of this equation requires the values of two
parameters, a and 6. o« was calculated assuming that plasmid coded proteins
are 15% of the chromosomal proteins. This value was calculated based on
the activity of B-lactamase, which for cells grown at a dilution rate equal

to 0.2h h‘l, was 37 units/ml. Since 3500 units of activity correspond to 1
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mg of B-lactamase, and 0Dggy~ 1.4 approximately yields 150 ug protein (44|
(00gog of our culture was 1.1), it can be calculated that about 10% of the
cell protein is B-lactamase. The B-lactamase gene in pl7 is placed down-
stream of the modified tac promoter, which is controlled in nearly the same
manner as the lac promoter. Because of this, the lac [Q gene product is
unable to repress the B-lactamase or B-galactosidase gene. This was con-
firmed by our batch experiments with £ coli/B/r/pl7 in the presence and
absence of IPTG. B-lactamase activity in the culture with IPTG was about
26 units/ml, 10% more than that in the absence of IPTG (26 units vs. 24).
We also did batch experiments with E coli/pSKS104. pSKS104 is a pBR322
derivative with insertion of the lac operon in the tetracycline gene of
pBR322. The B-galactosidase activity in the culture with and without PTG
was 6900 and 5800 units, respectively. This observation indicates that the
presence of plasmid pl7 causes expression of lac operon at nearly the fully
induced level. B-galactosidase in induced cultures constitutes about 5% of
the cell protein (45]. Although B-galactosidase is a chromosomal gene, it
is only produced in large amounts in cells with plasmids, which means that
in plasmid carrying cells synthesis of about 15% of the cell protein (10%
B-lactamase, and 5% B-galactosidase) is due to the presence of plasmids. 8
was calculated from the predicted number of plasmids predicted by the model
for each growth rate (12 at 0 = 0.7 h‘l, and 11 at D = 0.3 h‘l).

Perretti and Bailey [46]| have recently extended our base model (17,18]
to include more details on control of transcription and translation. This
detail will likely become important to predictions of productivity and
stability at high levels of expression of plasmid encoded proteins where
the availability of RNA polymerase or other key enzymes may become

limiting. The model described in this paper which details control of

L it
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plasmid number could be integrated with the extended single-cell model

developed by Perretti and Bailey [46].

CONCLUSIONS

We have developel a molecular model for replication cortrol of
plasmids containing Coltl c¢rigin of replication. The model ciearly
illustrates the use of a4 molecular approacn in formulating medels from the
biological mechanisms. Since all the model pdrameters were chtained
independently, the mode! should prove useful to biologists, to elucidate
the nature of interactions involved in the regulation ot plasmid copy-
number, as well as to engineers, to evaluate the optimum operationa!
conditions for maximum productivity of bioreactors for genetically modified
microorganisms. The inclusion of the plasmid model into the highly
structured single-cell model allows the prediction of the stability of a
recombinant culture under different growth conditions. We believe that
this model is the first to be able to make such predictions using only

input data on substrate concentration.
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NOMENCLATURE

Transcription rate of RNA I promoter
Transcription rate of RNA II promoter t-!
Degradation rate of RNA I

Degradation rate of RNA I1

Second order rate constant between the BNA's species
The saturation constant for Rom protein

Binding frequency of RNAIL transcript with DNA tem-—
plate at the origin

Protein content of a single—cell
Chromosomal DNA

Number of RNAI and RNAII molecules per cell, respec-
tively

“Yumber of Rom molecules per cell
Cytoplasmic volume

Enhancement in the binding constant caused by Rom
protein

Maximum enhaancement in the Yinding constant in the
presence of excess Rom protein

The proportionallity constant
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APPENDIX
Equations Changed in Base Model (Ref. 18) to Account for

Resource Flow to Plasmid and Plasmid Protein Synthesis

dATP dA dp dp dp dM
( J=8 (22} + 6 (51) +6 (£22) + 8 (£ + 5 (9
dt Ay dt P, dt 'S Py dt 'S P, de S MS dt
dM, dM,
+ § ((dMI) + dMPL) + 5 '( RTI + ( M) , + 5 (dM3 + 6 dMu)
My dt S dt M, dt S de °S M4 dt M, dt S
I LA I ) (3)
PG dt 'S v dt
d:iPL . - . . T & 1
where 3 is the rate of protein synthesized irom plasmid genes.
t
G2 N e YR Y AN STL B Y SR 1L
7
dt KP1 + Py/vV KPIAI + A/V KPIA2 + Ap/V
KTP dM dp du dp
-k e e Y O ) B ) B O
TP; K + Ay/V dt de de dt
dM3 dPLDNA dpy, dM,
+ € + ——) - g —+ + Y ——*) . (8)
2134 AP “dr
where gg&gﬁé is the rate of plasmid DNA synthesis.
dt
P “““":'-w"‘m»&d.,mau;“..u—..‘-»a;,..«,.' . . _.I~.‘.4 . ‘ X . _ » .
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i ", Py /V AV 3.y
dt K, + Pp/V K + Py/V K + Ay/V
P, 2 P,P, 2 PoA, 2
dM, dM dM,
-k KP2 Py - ¥, RTL, _ (_°RTM, (M )
TP, KTP2 + Ay/V dt dt D dt
: NA
- E3(£.1+ y3(9ﬁ+gﬂ_)) 9)
dt dt dt
K .
dP3 (- FP3 (__PalV g A2V By - (&l 4 dPLDNA,
dt KP3 + P3/v KP3P + Py/V KP3A3 + Ay/V dt dt :
10)
dMa, N N
"_1, =, dM, + diPL -k .M, (15)
dt M dt dt s T, M
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FIGURE LEGENDS

{ Figure 1. B-lactamase activity from plasmid pBR322 as a function of

dilution rate in a continuous culture of E. coli B/r/pBR322.

Figure 2. Stability and 8-lactamase activity of plasmid pl7 in a con-

tinuous culture of E. coli B/r/pl7. Stability is defined as

fraction of plasmid-containing cells in the culture as de-

termined by ability to form macroscopic colonies on ampici-

lin containing plates. Solid line is the model prediction

of stability, where,l. , denotes our experimental measure-

ment. The, @, denotes B-lactamase activity where the dashed

line is the best line through the experimental points.

Dilution rate was 0.7 h_l.

Figure 3. The same as Figure 2 except that the dilution rate is 0.27
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TABLE 1

EQUATIONS WHICH SIMULATE REPLICATION CONTROL OF THE ColEl PLASMIDS

d ky

E-RNAI = K *« PL -~ —< < RNAT « RNAII - k * RNAIT @D)
t Tryat Ve dRNAL
d ko
-E— RNAIT = K « PL - —% » RNAJ] - RNAII - k « RNAII (2)
t TRNAII VC dRNAII
E_ Rom = (B « PL * 4.0 x 10—18 . l_) . éﬂl (3)
dt M3 dt
where K k,, and kd represent the overall transcription rate, second

T,

order rate constant, and the degradation rate of the indicated RNA
species, respectively. Also,

o = Rom/VC . g (M)

where a is the enhancement in the binding between the RNA's species
caused by Rom protein. a' is the maximum enhancement in the binding
constant between the RNA's species in the presence of excess Rom
protein, and

ko = kz'(1+a) (5)
where k, and k', represent the binding constart between the RNA's species
in the presence and absence.of the Rom protein. Thus the model pertains to

both plasmids that produce Rom and mutants that do not.




TABLE 2
MATHEMATICAL DESCRIPTION OF THE CRITERIA FOR INITIATION

OF A ROUND OF REPLICATION AS DESCRIBED IN THE TEXT

1) The average time between successive binding of an RNA polymerase to
RNA I1 promoter is evaluated from the reciprocal of overall trans-

cription rate of RNA IT (i.e. l/KT ).
RNA T1

2) The aumber of RNA Il molecule which escape binding with an RNA I

molecule is calculated by the following equation:

~k, * RNAI _

RNA I1 = RNA IT_-e Ve bt

where At is the average time required for RNA polymerase to trans-
cribe RNA 1T through the origin of replication.

3) The number of plasmids at any time during the cell cycie is>calcu-
lated from the number of RNA 11 transcripts initiated (i.e., the
first criteria), which escape binding with an RNA I (i.e. second

criteria), and hybridize with DNA template at the origin.

where f is the frequency of binding of RNAIl transcript to the DNA
template at the origin resulting in a DNA-RNAIl hybrid which can be cleared

by RNaseH. PL and PLt denote the number of plasmids before and after

t-1
the Jatest initiation of transcription from the RNAIl promoters.
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TABLE 3

THE VALUES OF PARAMETERS*

Parameter Value
-1
kd 21 h
RNA I
k 63 Transcripts/hr promoter
TRyA 1
KoLk 8.8, 17.3 x 1o % ™"
2 2 molecule-h
-1
kd 21 h
RNA 11
kT 10 Transcripts/hr promoter
RNA 11
-6
! 2+10 "M
&Rom !
f 0.5
8 0.024
*
See reference 22
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TABLE 4

EFFECT OF GROWTH RATE ON THE

PLASMID pBR322 rom—DNA CONTENT

—

mg Plasmid DNA

Growth Rate g. bacteria
0.94 0.70
Lﬂ 0.67 0.82 o
0.5 0.92
0.39 0.99
S
0.29 1.10
. o e - VR TIN
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TABLE 5

Relative Productivity of Plasmid~Encoded Protein Synthesis

as a Function of Growth Rate.

Case for Plasmid pBR322 rom

and the Assumption of Plasmid Protein Synthesis as Constant

Fraction of Total Protein Synthesis

r

Plasmid Protein Plasmid Protein
Growth Rate Cell Productivity
h -1 (g * proteln 101“) (g * protein ”)5)*
cell ml~hr
0.94 0.159 0%
0.80 0.127 0.270
0.67 0.102 0.215
-
0.50 0.082 0.145
0.38 0.081 0.116

*Assumes 1.0 g/L glucose in feed.
tZero productivity is obtained due to b = Ppay
washout point.
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TABLE 7

The Effect of Growth Rate and the Level of Expression of the Plasmid

Genes on the Stability of a Continuous Culture of Recombinant E. Coli/

pBR322 rom

r

*number of generations
containing cells

P Y AL ™ T - NAVENU Iy Z Ny e

Glucose Conc.| Growth Plasmid Encoded Proteins
(ppm) Rate Total Cell Protein at m*
1000 0.940 0.0 1 0
0.858 0.15 1.095 308
j
" 0.762 0.31 1.232 132
0.707 0.48 1.3284J 95
3.27 0.3926 0.0 1.0 o
" G.350 0.15 1.130 228
-
0.313 0.31 1.265 116
0.286 0.48 1.380 78 L
L

required to reach a population with 10% plasmid
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SUMMARY

Changes in plasmid copy number with growth have important implications
for productivity of plasmid gene products. Stationary phase cultures often
have higher plasmid copy numbers than growing cultures. Further, the use
of immobilized cell cultures is of increasing interest and cel! growth
under these conditions is often very slow. Thus it is of interest to
predict the behavior of plasmid-containing cells under slow growth
conditions.

We have developed a single-cell model of E. coli which contains
significant detail on metabolic interactions. Extension to slow growth
(doubling times of 20h to 150h) is straightforward. Growth rate
predictions for glucose-limited cultures resemble that for the Monrod
egquation with a maintenance term. Membrane energization is the dominant
maintenance energy cost. A minimum glucose concentration is necessary to
maintain growth > 0. The value of this minimum depends on cell geometry.
Cell "death" (growth < 0) occurs when the cell cannot adjust its size

rapidly enough to satisfy the equation:

Rate Glucose Uptake-Surface Area > Maintenance Energy for Cytoplasmic
Functions-Cell Volume + Maintenance Energy for Membrane
Energization-Surface Area

Thus cell death depends on initial conditions and the population model can
predict which portion of the population will remain viable.

The base single cell model has been extended to include the ColEl type
plasmid replication mechanism. If the transcription rates for the RNAI and
RNAII are assumed independent of growth rate, then the predicted plasmid
copy number is relatively independent of growth rate even at low growth

rates. If the transcription rates for RNAI and RNAII change with growth




rate in a manner directly proportional to the cellular protein synthesis
rate, then the copy number is several-fold higher in very slow growing
cells although relatively independent of growth rate for moderate growth
rates (u > 0.3h-1).

INTRODUCTION

The normal environment for enteric organisms such as Escherichia coli is
one of "feast and famine®. Over the eons the metabolic control systems for
E. coli have been tuned to deal with severe environmental fluctuations. This
type of selective pressure is part of the reason that metabolic control
systems in E.coli and in higher eucaryotic cells differ since higher
eucaryocic cells are in a relatively more constant environment.

Most fermentation specialists have focused on growth in nutrient rich
environments or the "feast" part of the cycle. Yet slow growth or "famine"
conditions may be technologically important. The most obvious is an
immobilized cell system where cell growth is often intentionally
suppressed. Immobilized cell systems offer numerous potential advantages
detailed elsewhere in this volume. The potential for cell containment and
for control of segregational losses of plasmids make slow growing
immobilized cell systems particularly attractive for genetically modified
bacteria.

The survival of genetically-modified cells accidentally released from
fermentation processas is of requlatory concern. Prediction of survival of
a cell population in a "natural" environment is useful in addressing such
concerns and certainly requires sound predictive models. In some cases it
has been proposed to use genetically-modified cells for the insitu treatment
of hazardous wastes (1) or in crop protection (2). Such intentional

release of cells raises not only regulatory concerns but questions of
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efficiency of the treatment. Again models may help to identify those con-
ditions in which the process would be effective without the engineered
organisms being displaced too soon by competing natural populations. In
all of these circumstances we might anticipate that the cells would be
subject to periods of nutrient deprivation.

The consideration of how a cell functions under conditions of nutrient
deprivation and slow growth raises intrinsically interesting questions
about which bjochemical steps are rate influencing.

We have previously described a computer model for a single-cell of
Escherichia coli (3-8). This model provides a detailed framework in which to
explore questions of slow growth and the effects of genetic modification.
Unlike many other models this model predicts cellular response (growth
rate, composition, size, shape, timing of chromosome replication, etc.) as
an explicit function of changes in substrate levels. Currently the model
responds to giucose or ammonium jon as limiting nutrients in a glucose-
salts minimal medium. Since glucose is both an energy and carbon source,
its use as a limiting nutrient provides opportunities for complex behavior.

The purpose of this paper is to describe extension of this model to
conditions of slow growth for both wild-type cells and plasmid-containing

cells under glucose limiting conditions.

SLOW GROWTH OF WILD-TYPE CELLS
In our previous work we considered growth rates above 0.15 hr-l. In
applying the model to Tow growth rates we discovered an error in the
earlier formulation (4). Our intention was to have the rate of amino acid
degradation be approximately 50% of the protein degradation rate (for which

experimental data existed). Inadvertently the rate constant for amino acid
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-degradation was set at 50% of the rate constant for protein degradation.

However, to have the mass flux for amino acid degradation, the value for
the constant, kyp;, needs to be set at 5.0 hr-1 since both degradation
reactions are assumed to be first-order but the protein pool is much larger
than the amino acid pool. This change does not alter model! response for
growth rates above 0.15 hr-1 although it makes a substantial difference at
very low growth rates (below 0.05 hr'l). For consistency the degradation
rate constant for ribonucleotides, kypp, was recalculated to be 0.12 hr-1
instead of 0.03 hr=l. The change in kypp has no effect on model response
at any growth rate. The saturation constant for energy dependent degrada-
tion of amino acids (Kypy) was altered from 11 mg/L to 30 mg/L of Ay (Tow
molecular organics derived from glucose) to reflect the observed change in
A, concentration when the cell switched from carbon to energy timitation.

Once these corrections to the original model were made it was possible
to use the model to discern which step(s) under glucose limitation alter
growth response. Simulation results indicate that at growth rates above
0.15 hr-1 the internal A, concentration is relatively constant while below
0.15 hr-! the A, concentration decreases nearly linearly with growth rate
(see Figure 1). We interpret this result to indicate that the cell is
primarily limited for carbon above 0.15 hr-1 while at lower growth rates
the ability to convert A, into energy becomes limiting.

One might suppose that if the uptake rate for glucose were increased
then the effects of glucose limitation could be suppressed. As shown in
Figure 2, simply changing the glucose uptake rate changes the quantitative
response of the cell to variations in glucose concentration but not the
qualitative response. In each case there is obvious deviation from Monod-

type depending on glucose concentration. Further, no matter what uptake




rate is used in these calculations, there is an asymptotic approach to zero
growth rate at a finite glucose concentration. The curvature in these
plots are suggestive that more than one enzymatic reaction is growth rate
influencing (9). Although a similar curvature would be predicted by a
model with a diffusional step followed by an enzymatic step (9), diffusion
is not ailowed in the single-cell model calculations. The concentrations
shown in Figure 2 are those that exist at the cell surface and if diffusion
is important, these values will be less than the bulk concentration of
substrate. Thus, at Teast two enzymatic-type steps must be controlling in
the model at low substrate concentrations.

Clearly the predicted behavior deviates from the Monod equation. We
screened several cellular processes to determine if they were responsible
for growth rate approaching zero at a relatively high residual glucose con-
centration. For example, it was found that altering the stringent response
(see 10) and the rate of RNA synthesis had no effect on the qualitative
nature of the cellular response at very Jow glucose concentrations although
it does at moderate glucose concentrations.

Another possibility is that non-growth associated rather than growth
associated phenomena are controlling at low glucose concentrations. As
shown in Figure 3, the prediction of a finite residual glucose concentra-
tion is simply a consequence of maintenance energy requirements, since
removal of these terms results in Monod-like behavior. The model contains
maintenance energy terms for precursor and macromo.ecule turnover, main-
tenance of membrane energization, and energy spilling reactions such as
ppGpp formation and degradation. Membrane energization, which is related
to cell surface area, is numerically much larger than the other maintenance

terms which are cell volume associated.

Lbnd




An unstructured model where growth rate is described by a Monod-type
term plus a maintenance term will give the same qualitative dependence of
growth rate on glucose as our more complex single-cell model. Equations of
this form are often used for describing the performance of activated-sludge
systems, although the interpretation of parameters is more difficult in a
multiple species and substrate system.

The single-cell model predictions of growth rate dependency on glucose
are consistent with the observations of Daigger and Grady (11) that the RNA
limiting theory of growth is inadequate for describing bacterial growth at
both intermediate and very low growth rates. However, the prediction of a
significant residual glucose concentration was somewhat unexpected since
the experiments of Shebata and Marr (12) report the growth of some strains
of E. coli at glucose concentrations much less than the 0.5 mg/L predicted by
the model. However, the presence of a second substrate, such as might
arise from cell lysis, can lower apparent threshold concentrations for
substrates (13).

Schmidt, etal. (14) have developed a method to calculate a threshold
concentration of a substrate when simple diffusion to the cell is the
limiting step. The calculation of the threshold concentration varies
strongly with changes in maintenance energy requirements. We are currently
extending the approach of Schmidt, etal (14) to a cell with a hemispherical
caps and a cylindrical body. However, based on a cell with a spherical
shape we believe that diffusion to the cell could play a significant role
(threshold concentrations 0.1 to 1 mg/L) for the high maintenance energy
values predicted for E.coli B/r at 37°C. These predicted values of
maintenance energy have been confirmed experimentally for moderate and

higher growth rates (6). However, it is quite possible that membrane




energization costs vary with growth rate since the lipid content of the
cytoplasmic membrane changes with growth rate. Harder (in a personal
communication in reference 14) believes that maintenance energy may be
significantly lower for bacteria growing in nutrient poor environments (10x
to 100x). Recently evidence to support decomposing the maintenance term
into a constant term and a growth-rate dependent term has been presented
(15). By changing membrane composition at lower growth rates the cell may
construct a membrane more or less resistant to proton leakage. Since
coupling a diffusion model to our cell model is relatively simple,
measurements of residual glucose concentrations at low growth rates should
provide a means to estimate the maximum allowable value of the maintenance
energy and its components.

Thus we compared the model predictions with chemostat experiments.
The results are shown in Figure 4 while the techniques used are described
at the end of this paper. This comparison is based on the assumption that
membrane energization is independent of growth rate and diffusion of
glucose to the cell surface is unimportant. Both the data and model
predict a finite glucose residual concentration of about 0.5 mg/L or
higher. Further, in batch experiments, even well out into the stationary
phase, we have measured glucose residuals of about 1.0 to 1.5 mg/L.

The deviations of model prediction from some of the data in Figure 4
is probably due to variations in the viability of the cultures. The
prediction derived from the single-cell model assumes 100% viability.
Experimental point A which agrees closely with the model has a population
of near 100% viability while at point B the population had a viability of
30%. Viability was not measured in the other chemostat experiments. If

the viability is less than 100%, dilution rate does not equal growth rate.
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(At a dilution rate of 0.05 hr-1 with a population that is 30% viable the
growth rate of the viable fraction must be 0.17 hr-1).

Agreement of these data with the model cannot totally validate the
model. For example, we cannot exclude the possibility of cell lysis which
could release a variety of potential substrates. Under conditions of low
nutrient availability, E coli no longer uses glucose preferentially (16).
Experiments with long residence times can be difficult to conduct due to
wall growth or genetic instability although we believe neither of these
were present in our case (see "Experimental" section).

In any case the experimental data do suggest multiple steady-states
where the viable portion maintains a similar growth rate and substrate con-
centration but the portion of the population viable changing with dilution
rate. Such multiple steady states can probably be predicted by the type of
modeling approach employed here.

Consider the following relationship:

S R, =S E +V E, (1)

>

where S is the surface area of the cell; RA, is the rate of glucose uptake
which is a function of the external concentration of glucose; Ey 1s the
rate of metabolic energy expenditure per unit surface area required to
maintain membrane energization {or potential); V is the cell volume; and Er
is the rate of maintenance energy expenditure due to the turnover of cel-
lular constituents. If eguation 1 is satisfied, than the cell can remain

viable. tquation 1 can be expressed as:

(RA—EWZE#VS) (2)
A,
Thus elongated cells with a high S/V ratio are more likely to satisfy equa-
tion 2 than short cells. The single-cell model predicts a sharply

increasing S/V ratio at low glucose concentrations for cells in a steady-
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state situation. Consider, however, the transient situation. A cell
growing in a rich medium will have a relatively small S/V ratio. If it is
switched to a low glucose concentration, can it change its shape
sufficiently rapidly to satisfy equation 2? I[f we had a population of
cells distributed over a wide variety of cell sizes and S/V ratios, we
could anticipate that some cells could adjust to a large shift of glucose
concentrations while others would not. Thus the apparent steady-state
obtained after four or five residence times would be a function of the
initial size distribution of the population. Work is currently underway to
confirm this possibility.

The model is numerically stable even at very low glucose
concentrations. At a glucose surface concentration of 0.55 mg/L the model
predicts a doubling time of 140 hr while at 0.50 mg/L cell death is
predicted since the internal glucose concentration is negative.

These results are with wild-type celis. When cells are actively
expressing plasmid encoded genes for non-essential proteins one would
expect even greater sensitivity to low glucose concentrations since the

plasmid-encoded functions can be like an extra maintenance energy term.

EFFECTS OF SLOW GROWTH ON PLASMID-CONTAINING CELLS
We recently have reported the extension of the single-cell model to
incorporate a mechanistic model for the replication of plasmids with the
ColEl origin of replication (17,18). Such plasmids are commonly used as
laboratory or industrial vectors with pBR322 and its derivatives being
examples.
The mechanism for ColEl replication has been well explored by Tomizawa

and colleagues (19,20). The plasmid encodes information for two species of
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RNA. RNAII, whose transcription is initiated 555 base pairs upstream from
the origin of replication, can combine with the origin of replication on
the plasmid. The RNA-ONA complex serves as the substrate for RNaseH which
cleaves the hybridized preprimer RNA to produce the RNA primer necessary to
initiate replication. RNAI is & shorter transcript (about 110 base pairs
long) transcribed in the opposite direction from RNAII, but on an over-
lapping section of the plasmid. RNAI acts as an inhibitor of replication.
RNAI binds to RNAII and prevents the formation of the stable RNA-DNA
complex which is a prerequisite for the formation of primer RNA. The
binding between RNAI and RNAIl is a second-order reaction; a plasmid
encoded protein, Rom, can increase the binding rate.

The model incorporates this mechanism and can make reasonable
estimates of plasmid copy-number for a variety of mutations to genes for
RNAI or RNAII which alter their binding rates and consequently the degree
of inhibition (17). The equations are described elsewhere in detail (17).
Briefly the model requires all plasmids to initiate rounds of RNAII
transcription at the same time. The transcription rate for RNAII
determines the time interval between application of the equation used to
calcualte the number of new plasmids formed a pre-existing set.

In this equation the intracellular concentration of RNAI will strongly
alter plasmid copy number by altering the probability that an RNAII
transcription event will result in initiation of repiication. The
concentration of the Rom protein alters the value of the binding rate
constant and thus influences copy number but not as strongly as RNAI.

Using the model we have found that if the RMAI transcription rate is
less than that for RNAII that runaway replication will occur. Clearly

specific inducible promoters coupled to the regions encoding for RNAI or
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RNAII could be used to manipulate plasmid copy number and changes in copy
number rather precisely.

The mechanistic model for ColEl replication was tested for predictions
of copy number for various mutations in RNAI and RNAII in the presence or
absence of the Rom protein and for conditions of moderate nutrient limita-
tion. In extending the model to conditions of lower growth rates to
determine the effect of growth rate on copy number it is necessary to
consider the effects of growth rate on the transcription of RNAI and RNAII.
Two possibilities have been considered by us. First is that the transcrip-
tion rate of RNAI and RNAII are not changed by growth rate. The second is
that both transcription rates vary as the overall transcription rate of the
cell varies.

The implications of these two assumptions are shown in Figures 5 and
6. The difference in predicted copy number between these two assumptions
is insignificant for growth rates above about 0.30 hr-L. However, the
assumption of growth dependent transcription rates leads to a rapid
increase in copy number at very low growth rates. [f the transcription
rate is assumed independent of qrowth rate, the copy number would change
very little with growth rate.

The growth dependent trdanscription rate certainly seems intuitively
reasonablie. The prediction of increased plasmid copy number under nutrient
starvation is consistent with a number of published reports. Steuber and
Bujard (21) report a several fold increase in copy number as cells enter
the stationary phase. However, interpretation of their results are
complicated by the use of spectinomycin to alter growth rate.

Siegel and Ryu (22) have reported on the effects of nutrient limita-

tion on copy number and plasmid content of a plasmid, pPLc23-trpAl, in E
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coliM72. This plasmid has the ColEl origin of replication. In the above
system the plasmid content (mgDNA/g.bacteria)} increased 8.0 fold when the
growth rate was decreased from u = 1.12hr-1 to 0.06 hr.-1 The model
predicts a 8.2 fold increase in plasmid content going from u = 0.09 hr-1
to 0.93 hr‘l. The plasmid content predicted by the model is higher than
measured by Siegel and Ryu (ca. 0.3 mg/g versus 0.5 mg/g at = 0.9 hr-1)but
this difference reflects differences in plasmid, host cell size, and
maximum growth rates. Siegei and Ryu measured 32 plasmids per cell at yu =
1.12 hrot and 74 at u = 0.06 hr-l. The model predicts copy number changing
froem 20 at p = 0.93 hr-l to 64 at p = 0.09 he-l. £ coli B/r's maximum
growth rate in minimral medium is 0.93 hr-1 which is slower than £ coli
M72's maximum growth rate. Thus the model predictions assuming variable
transcription rates for RNAI and RNAII give the same relative increase 1in
copy number with decreasing growth rate.

Clearly if the promoter for RNAI was effected differently from that
for RNAIT as a function of intracellular composition (i.e. growth rate)
then copy number dependence on growth rate would be altered from that
predicted here.

Once copy number is known it is possible to predict the depression of
growth rate due to expression of plasmid-encoded protein synthesis. If
copy number and the growth rate depression due to plasmid-encoded protein
synthesis is known, then a simple formula derived by Seo and Bailey (23)
can be applied to predict the stability of the culture. We have done so
with this model for moderate growth rates (u = 0.3 hr-! and 0.7 hr'l) and
have been able to predict the number of generations before 10% of the

population contains plasmids within 35% when compared to our experimental
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data (18). At the lower growth rate fewer generations are required before
instability is observed.

We believe that this type of analysis will aid in designing reactors
with cyclic or other dynamic operating patterns. In particular, an
increase of copy number at low growth rates suggests the possibility of
improving piasmid-encoded protein production by cycling the culture through
a "feast-famine" cycle. Further, by extending the model to Tower growth
rates we expect to have a basis for the design and rational understanding

of immobilized cell systems using genetically-engineered E. coli.

ACKNOWLEDGMENT
We gratefully acknowledge support, in part, by ONR GRANT (NOQO14-85-K-
0580). This research was conducted on the Production Supercomputer
Facility of the Center for Theory and Simulation in Science and
Engineering, which is funded, in part, by the National Science Foundation,

New York State and IBM Corporation.



—

P

10.
11.
12.
13.

14.

15.
16.

17.
18.
19.

-14-

REFERENCES
Powledge, T. M. 1983. Biotechnol. 1:743.

Anonymous. 1985. Biotechnol. 3:109.

Shuler, M. L., S. K. teung & C. C. Dick. 1979. Ann. N Y. Acad. Sci.

326:35.
Domach, M. M, S. K. Leung, R. E. Cahn, G. C. Cocks, & M. L. Shuler.

1984. Biotechnol. Bioeng., 26:203.

Shuler, M. L. & M. M, Domach. 1983. In Foundations of Biotechnical
Engineering, H. W. Blanch, E. T. Papoutsakis, and G. Stephenopoulos,
eds. ACS Symp. Ser. 207, Am. Chem. Soc., Washington, D.C., p.93.

Domach, M. M. & M. L. Shuler. 1984. Biotechnol. Bioenq. 26:877.

Attai, M. M. & M, L, Shuler. 1985. Biotechnol. Bioceng. 27:1027.

Shuler, M. L. 1985. Chemical Eng. Commun. 36:161.

Dabes, J. N., R. K. Finn & C. R, Wilke. 1973. Biotechnol. Bioeng.

15:1159.

Gallant, J. 1979. Ann. Rev. Genetics 13:393.

Daigger, G. 7. & C. P. L. Grady. 1982. Biotechnol. Bioenq. 26:1427.

Shebata, 7. E. and A. C. Marr. 1971. J. Bacteriol. 107:210.
Law, A. T. & D. K. Button, 1977. J. Bacteriol. 129:115.

Schmidt, S. K., M. Alexander & M. L. Shuler. 1985. J. Theor. Biol.

114:1.

Pirt, S. J. 1982. Arch. Microbiol. 133:300.

Harder, W. & L. Dijkhuizen. 1982. Philosophical Trans. Royal Soc.

London, Ser. B. 297:459.

M. M. Ataai & M. L. Shuler. 1986. Plasmid (in press).

M. M. Ataai & M. L. Shuler. 1987. Biotechnol. Bioenq. (accepted).

Tomizawa, J. 1984. Cell 38:861.




20.
21.
22.
23.

-15-

Tomizawa, J. & T. Som. 1984. C(Cell 38:871.
Stueber, D. & H. Bujard. 1982. EMBO J. 1:1399.

Siegel, R. & D. D. Y. Ryu. 1985. Biotechnol. Bioeng.

Seo, J. H. & J. E. Bailey. 1985. Biotechnol. Bioeng.

1<
N

1N
o



-16-

APPENDIX
Experimental Methods

Organism

E.coli B/r-A (ATCC 12407) was obtained from the American Type Culture
Collection, Rockville, Maryland and used in all experiments.
Medium

A modified "C" medium was used for chemostat experiments, batch
experiments, and culture maintenance. The medium contained 3.00g K2HPOg,
1.50g KH2P04, 1.25g (NHg)2504, 0.10g MgS0O4-7H20, 0.01g NaCl, 0.00lg
FeS04-7H20, 0.0372g NagEDTA-7H20, O0.1g CaCl2, 0.0lg MnSO4, 1.0g glucose and
one liter of distilled water. The pH was 7.0 + 0.1. A1l chemicals were
reagent grade. The medium was sterilized in three parts, Call2 and MnS04,
glucose, and the remaining salts to prevent carmelization of the glucose
and precipitation of calcium salts.
Glucose Assay

Giucose concentration was measured enzymatically using the glucose
S.V.R. kit (Calbiochem, tadollia, Ca.). The kit directions state to dilute
the enzyme with 15.0 mi of distilled water and then use 3.0 ml of enzyme
solution and 0.02 mi of sample. To measure very low concentrations of
glucose (down to 0.5 + 0.2 mg/L) the directions were modified as follows.
The enzyme was diluted with 5.0 ml of distilled water. 1.0 ml of the
enzyme solution was then added to 3.0 ml of sample. The absorbance was
measured at 340 nm. For low glucose concentrations the calibration is

linear and of the form:

[glucose] = mg/L

0.0345

e M R a“
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where AA is the difference in absorbance between the prepared sample and a
blank containing 1.0 ml of enzyme solution and 3.0 ml of distilled water.
The presence of media salts did not effect the calibration.

The medium sample was prepared by withdrawing about 5.0 mi from the
growth chamber and rapidly filtering through a 0.45 vm Millipore filter
attached to a syringe.

Cell Concentration

Cell concentration was monitored by measuring the absorbance of the
cell suspension at 600 nm.

Cell Viability

The percent viable cells was determined by measuring the optical
density of a sample and then plating 10-5 to 10-7 dilutions and counting
colonies. This was compared to colonies/m] measured at the same optical
density for cells growing in exponential phase.

Continuous Culture

The chemostats used were Bioflow Model C30 (New Brunswick, Edison,
N.J.) with working volumes ranging from 320 ml to 360 m). A peristallic
pump (Econo-Column pump by BioRad, Richmond, Ca.) feed system using silicon
tubing was employed. The feed rate could be modified to give dilution
rates ranging from 0.025 hr-1 to 0.15 hr-1. The system was mixed with a
small impeller and sparged with sterile, humidified air. Air was supplied
using a diaphram pump (Optima by Hagen, Mansfield, Mass.) and passing the
air through a packed column filled with water maintained at 37°C. Air was
filtered using a Millipore cartridge filter. The chemostat was maintained
at 3710.5°C. No pH control was used. The steady state pH in all

experiments was 6.7 * 0.05.

g
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Nominal residence times were determined by measuring the working
volume of the reactor at the appropriate air supply and stirring rates and
dividing by the flow rate determined by measuring the time required to pump
out a 10 ml pipet. Several residence time distribution studies were
performed using red food coloring as a tracer for residence times ranging
from 8 hr to 40 hr under conditions similar to actual chemostat operation.
This showed that the nominal residence time was within five percent of the
actual residence time measured.

The medium was steam sterilized in 10 Titer glass jars for 40 minutes
as described earlier. The chemostat was inoculated with about 10 m) of a
12 hr shake flask culture of E. coli. Batch growth was followed to insure a
maximum growth rate of at least 0.9 hr-1. After an optical density of 1.0
wds reached the reactor was set for continuous flow.

Steady state was determined by monitoring the glucose concentration
and the cell density within the chemostat. Steady state was assumed if at
least six residence times had lapsed and cell density and glucose

concentration remained constant or two consecutive residence times.
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FIGURE LEGENDS

The model predicts a nearly linear decrease in internal concentration
of Tow molecular organics ("glucose") at lTow growth rates (below 0.15
hr—l) while this internal concentration is relatively independent of

growth rate for moderate growth rates (0.15 hr-1 to 0.9 hr-1).

Altering the maximum rate of glucose uptake does not alter the
qualitative nature of the predicted growth response to changes in
substrate concentration. The dash/dotted, dashed, solid and dotted
lines represent the response if the maximum rate of glucose uptake is
set at 50%, 75%, 100% and 125% of its normal value (ref. 4),

respectively.

By removing the maintenance energy terms the model predicts Monod-1ike
dependence of growth rate on substrate. The dashed line represents
the prediction from the complete model. The solid 1ine is the model
prediction when maintenance terms are removed. The dotted line

represents the Monod equation with Kg equal to 4 mg/L.

The predicted and measured dependence of residual glucose
concentration on dilution rate is shown. Dilution rate equals growth
rate if and only if all cells are viable. The solid line represents
predictions of the model. For measurement A culture viability was

100% while at measurement B only 30% of the cells were viable.

v
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The plasmid copy number is shown as a function of growth rate for a
derivative of a ColEl type plasmid in E.coli B/r. The binding constant
between RNA I and RNA II for this plasmid was 9.2 x 10-13 in the
presence of the ROM protein. The solid line represents the case where
RNA I and RNA II transcription rates vary with growth rate in a manner
proportional to the changes in average transcription rate in the cell.
The dashed line represents model predictions if RNA I and RNA [1
transcription rates are independent of growth rate and set at the
observed values obtained under conditions of exponential growth in

hatch culture.

The prediction of plasmid content on growth rate for the same

conditions as described in Figure 5.
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